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Chapter 1: General Introduction 

Major Depressive Disorder (MDD) is a mental disorder wherein diagnosed patients 

experience, amongst others, depressed mood, decreased pleasure, sleep problems 

(hypersomnia or insomnia), psychomotor agitation or retardation, and fatigue (American 

Psychiatric Association, 2013). It is a common mental disorder and one of the most important 

factors of disability worldwide, with approximately 264 million persons suffering from its 

consequences (WHO, 2009).  

Findings from earlier research suggest that MDD involves encountering various complex 

endogenous and exogenous triggers during a person’s lifespan through a perpetual process of 

continuous changes in vulnerability (Beauchaine et al., 2011; Wichers et al., 2010). As 

various triggers and their timing are distinctly person-specific, significant changes, or 

transitions, in depressive symptom severity can be challenging to foresee. This is partly due 

to the commonly used nomothetic research designs – focussed on group-level studies and 

generalising knowledge – being the most commonly used perspective for studying depression 

so far. In order to translate nomothetic research findings on MDD into useful assets for 

clinical practice, a more person-centred (or idiographic) approach – focussed on individual-

level studies and person-specific knowledge – is required (Molenaar, 2004; Zuidersma et al., 

2020).  

An idiographic focus can help to unravel the complex individual differences in fluctuations in 

symptoms typically encountered in patients in clinical practice. Given the inability of 

methods currently used in psychological research to process such individual differences, a 

different approach is required to gain insight into the development of depression vulnerability 

and to be able to support personalised interventions. This new appreciation for idiographic 

research highlights the need for novel approaches to better grasp the developmental 

trajectories of disorders in individual patients. Discovering personalised mechanisms could 

potentially contribute to improved treatments for MDD and associated disorders. In this 

general introduction, I will elaborate on why approaching depression as a complex dynamical 

system could contribute to the field and which data acquisition methods are needed to obtain 

the intensive data to longitudinal monitor changes in depressive symptoms. 
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Illustration of complex dynamic systems 

Complex dynamic system theory has shown its merit in understanding switches between 

alternate stable states, seeing application in, for example, biological, financial, and climate 

science contexts (Scheffer et al., 2009). The underlying conceptual principles are relatively 

simply explained though via a practical demonstration of a cusp model, a type of catastrophe 

model (Van der Maas, 2004; Wagenmakers et al., 2005). In short, the cusp model is a model 

with one behavioural axis and two control axes, which can show the various potential stable 

and unstable states. For example, try holding a credit card between two fingers of one hand 

(or see figure 1). When some pressure is applied, the credit card will bend, ending up in one 

of two final states; being bent to the left, or being bent to the right, while any state between 

these two is unstable. A transition, for example, the credit card going from being bent to the 

right side to being bent to the left side, can be forced by applying pressure from the side. 

Notable here is that it takes quite some pressure to force the credit card into the other stable 

state, that the movement of the credit card from right to left does not progress linearly, and 

that this transition can occur very suddenly. This simple example of a system with two stable 

states can be used as a starting point for conceptualising mental disorders, such as depression, 

as complex dynamic systems. For instance, instead of the credit card now imaging a person 

with a history of experiencing depressive symptoms, but currently being symptom-free. This 

person’s current state, not experiencing depressive symptoms, can be seen as one of the two 

stable states the credit card could be in. Now, when external or internal stressors start putting 

this person under pressure, the risk of transition towards the other stable state, experiencing 

depressive symptoms, will increase. However, as with the credit card, the transition from the 

not depressed state into the depressed state will not happen linearly and can occur quite 

suddenly and unexpectedly, thereby frustrating the timely prevention of mental disorder 

onset.  
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Figure 1: Example showing forces applied to a credit card (upper panel) and how they relate 

to a transition model (here a ‘Cusp’ catastrophe model). 

Major Depressive Disorder conceptualized as complex dynamic systems 
These conceptualisations can help to illustrate why previous methods struggled to identify 

transitions in mood disorders, such as MDD. For example, methods depending on a linear 

progression of a transition between mood states, such as being depressed or not, will fall 

short in detecting the non-linear progression often observed by mental health care 

professionals in patients suffering from MDD. The risk for transitioning towards, or away 

from, being depressed is highly dependent on the waxing and waning of various internal and 

external processes, which can be hard, if sometimes not impossible, to track reliably and 

consistently. This struggled to identify transitions in mood disorders is further complicated by 

the well-known large individual differences in psychopathological mechanisms.  

The conceptualisation of mental disorders, such as depression, as complex dynamic systems 

was already suggested over twenty years ago (Hayes & Strauss, 1998; Van der Maas & 

Molenaar, 1992). However, most research into this construct is conducted in other fields. The 
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sudden manner in which lake water can transition from clear to turbid water quality, but also 

various pathologies such as epileptic seizures and asthma attacks, can be accurately modelled 

using  measures derived from complex dynamic systems theory (Scheffer et al., 2009). In 

short, a complex dynamical system approach can potential predict the onset or remission of 

symptoms without fully understanding the mechanisms causing these changes. Both sudden 

rises in depressive symptoms and sudden disappearance of symptoms, are frequently seen in 

patients and suggest that the fragility of the system builds up gradually and eventually results 

in a sudden critical transition. This is a typical characteristic of complex dynamical systems. 

Scheffers and colleagues (2009, 2012) argue that critical transitions are preceded by a 

characteristic critical slowing down (Wissel, 1984). When a system approaches a critical 

transition (or a tipping point), it returns more slowly to its initial stable state under small 

perturbations. The return time to the stable state can index whether a critical change is near or 

not. Based on these phenomena statistical indices have been proposed to operationalise this, 

not simply for the eye detectable, slowing down (Nazarimehr et al., 2020). These indices are 

named Early Warning Signals (EWS). Although theoretically valuable and potentially 

clinical relevant, studies have not yet empirically and prospectively investigated whether 

EWS anticipate critical transitions in the severity of symptoms of mental disorders, such as 

MD. For this, innovative monitoring tools to gather intensive time series data of individual

patients and analytical (pre-)processing tool are needed. In the following section, I will first

elaborate on the main aim of this thesis, that is, predict transitions in depression with EWS

and subsequently the time series data acquisition tool needed for this.

Early-warning signals  

Conceptualising depression as a complex dynamical system allows us to apply promising 

statistical techniques to predict upcoming symptom transitions, which proposed a simple set 

of indices, called generic early-warning signals (EWS). EWS could help detect whether a 

transition from one state to an alternative one is afoot. For example, it is well-known that 

patients who are in stable remission and wish to taper their antidepressants use are extra 

vulnerable to experience a significant change in their depressive symptoms (Shelton, 2001). 

Here EWS indices may signal an increase in system instability, which is expected to occur 

before a transition (Dakos, Van Nes, et al., 2012; Scheffer et al., 2009). Common time series 

derived EWS indices include increasing variance, autocorrelation, and kurtosis (Biggs et al., 

2009; Dakos, Carpenter, et al., 2012; Scheffer et al., 2009). Variance is a measure, which 



11 

indicates dispersion of data points around a certain value, say 100. Here, low variance would 

mean most data points would lie relatively close to 100, while with high variance the data 

points would lie varied from relatively close to relatively far away from 100. Autocorrelation 

is the correlation of something with a delayed version of itself, the delay often being specified 

as lag-n. For example, autocorrelation at lag-1 is the correlation of a measure with a delayed 

version of itself with a delay period of 1. Kurtosis is a measure of the “peakiness” of a 

probability distribution of a certain variable. More positive kurtosis corresponds to a more 

peaked distribution with less weight in the tails. More negative kurtosis on the other hand 

corresponds to a relatively flat probability distribution with more weight in the tails.  

Predicting transitions in depressive symptoms 
As outlined above, EWS are deemed generic because they are not dependent on the exact 

underlying model. In a pioneering case-study in an individual diagnosed with MDD tapering 

his antidepressant use, it was shown that increases in EWS, namely variance and 

autocorrelation, derived from daily fluctuations in experienced affect can be observed in 

anticipation of a transition in depression (Wichers & de Groot, 2016). This was the first study 

showing rising EWS within a single person anticipating a clinically and statistically 

significant transition in depressive symptoms. It highlighted that EWS measures and analyses 

tailored to such single-subject designs are helpful to successfully study the development of 

depression in individuals. As such, this study has laid the groundwork for subsequent 

investigations herein, such as the TRANS-ID (TRANSitions In Depression; www.transid.nl) 

study.  

The TRANS-ID study was designed as a repeated single-subject study (TRANS-ID Tapering 

(see: https://osf.io/zbwkp/); TRANS-ID-Recovery (see: https://osf.io/85ngu)). Time series 

data were gathered during four months from over 100 participants with a background of 

MDD to investigate whether EWS in a broad range of data types would be detected preceding 

transitions in depression. The collected data were multi-faceted as it includes various data 

types, namely daily diary data (or experience sampling method, ESM), physical activity data, 

and electrocardiogram (ECG, or heart rate) time series data. ESM is a scientific method to 

optimize accuracy and validity of self-report of affective experience in normal daily life. 

Participants fill out a short questionnaire, multiple times a day. Earlier research showed that 

ESM monitoring, also for longer periods of time (weeks, months) is also feasible for affected 

psychiatric patients (Bos et al., 2019), although sometimes experiences as burdensome (van 

Genugten et al., 2020) as it requires conscious effort. Recent innovations in ambulatory 
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monitoring have made easy, non-invasive monitoring of physical activity and ECG activity 

with low participant burden possible. Although wearable monitors cannot measure emotions 

or mood symptoms directly, they do offer objective measures, while offering potentially low 

burden to participants. Various data modalities can help negate each other’s disadvantages. 

Therefore, it makes sense to combine various data modalities and to monitor both ESM and 

physiological measures. Part of the studies presented in my thesis can be seen as 

complementary to the TRANS-ID ESM studies, as I investigate objective and physiological 

time series data in relation to (transitions in) depression. I used data collected by the 

participants via wrist-worn actigraphy monitors and inter beat-interval (IBI or heart rate) data 

collected with wireless electrocardiogram (ECG) monitors. Typically, actigraphy is assessed 

at the second level and IBI time series do constitute the most fine-grained type of data 

assessed at microsecond level. To the best of my knowledge, these types of data have not 

been used before to test the dynamical systems hypothesis.  

In sum, ambulatory monitoring technology advances quickly, enabling and facilitating the 

long-term monitoring of actigraphy and ECG patterns. This offers an opportunity to combine 

the newest insights and ideas from the field of complex dynamical system theory with the 

newest technological possibilities and a novel personalized vision on psychiatry. The 

psychiatric field would move forward if we can indeed obtain personalized information on 

the likelihood for critical transitions in depressive symptoms using time series data from 

ambulatory monitoring of physical actigraphy and ECG. However, before continuing on 

actigraphy and ECG time series derived EWS to predict transitions in depression, a short 

overview is given on the link between depression and actigraphy and both ambulatory and 

non-ambulatory ECG data. 

Conceptual links between actigraphy and ECG time series data and depression 

In the following paragraph, the two main types of time series data linked to depression used 

in this thesis; physical activity data and ECG data, will be introduced. 

The link between sleep and circadian rhythm disturbances and depression 

Living organisms show cyclic rhythmicity in many of their physiological and behavioural 

processes, for instance, sleep and wake cycles. The suprachiasmatic nucleus (SCN), located 

in the anterior hypothalamus, functions as a master circadian (from the Latin circa diem; 
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meaning around one day) clock sustaining a near 24-hour cycle (Stephan & Zucker, 1972; 

Stetson & Watson-Whitmyre, 1976). Factors such as light (Van Someren et al., 1999) and 

(absence of) feeding (Damiola et al., 2000) play a role in maintaining the circadian rhythm, 

by entraining it to external Zeitgebers. There is an established link between experiencing 

depressive symptoms and specific physical activity patterns, such as psychomotor retardation, 

wherein patients experience a slowing down of and reduction in their physical movements. 

This psychomotor retardation is a key feature of MDD and it is one of the main symptoms 

used to diagnose MDD (American Psychiatric Association, 2013; Buyukdura, McClintock, & 

Croarkin, 2011). Given this knowledge we know that physical activity patterns change when 

patients start to experience more depressive symptoms, and thus expect physical activity to be 

an important component of depression. Patients experiencing mood disorders often report 

sleep issues, such as having problems falling asleep or waking too early (Tsuno et al., 2005). 

Moreover, earlier studies have suggested that sleep problems are related to negative clinical 

outcomes. For instance, persons experiencing insomnia are known to have a significantly 

increased risk for developing major depression (Breslau et al., 1996; Mallon et al., 2000). 

Moreover, insomnia was found to occur before the onset or reappearance of depressive 

symptoms (Perils et al., 1997; Riemann & Voderholzer, 2003). In addition to these sleep-

related issues, problems with circadian rhythm have been linked to depression. For example, 

while healthy individuals commonly experience lower mood in the evening than in the 

morning, the reverse is true for individuals suffering from depression, who often report lower 

mood in the morning than in the evening (Gordijn et al., 1994; Tölle & Goetze, 1987). Such 

behavioural patterns are also known to change and normalise during treatment and recovery 

(Winkler et al., 2014). Based on such earlier works, disturbances in sleep and circadian 

rhythm are ought to play a considerable role in the development and maintenance of mood 

disorders (Germain & Kupfer, 2008). These disturbances are found to be so central to the 

characterization of depression that they are included as diagnostic criteria for depression; 

highlighting fatigue, sleep difficulties (insomnia or hypersomnia), and psychomotor 

retardation (American Psychiatric Association, 2013; Frankland et al., 2015; Parker et al., 

2002). A non-invasive method for collecting data on sleep and circadian rhythm is 

actigraphy. Actigraphy uses wrist-worn accelerometers to measure data from participants in 

their normal daily life environment, and with minimal burden to the participant (Fuller et al., 

2017). 
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The link between heart rate and depressive symptoms 

Cardiac imbalances in the (para-)sympathetic nervous system are also known to be associated 

to the development and maintenance of depression. Such imbalances are reflected in heart 

rate or Inter-Beat Intervals (IBI), or heart rate variability (HRV) measures (Choi & Gutierrez-

Osuna, 2010; Malik et al., 1996). A number of prior nomothetic studies have provided group-

level knowledge about the relation between cardiac measures and depressive symptoms. For 

example, decreased HRV indicators were found to be associated with depressive symptoms 

(Vaccarino et al., 2008). As HRV decreases, heart rate will show less and less variation, 

making the heart rate less adaptive to triggers from the internal and external context or more 

rigid (Dekker et al., 2000). HRV rigidity is related to various unwanted health effects, such as 

myocardial infarctions (Kleiger et al., 1987) and increased mortality rates (Schouten et al., 

1993; Dekker et al., 2000). Whether the heart rate can react flexibly or rigidly may influence 

how individuals can cope effectively with mental, physical, and environmental stressors 

(Colzato et al., 2018; Hel et al., 2021). Heart rate can change due to depressive symptoms, for 

example deregulated cardiac autonomic nervous function, including elevated heart rate (HR) 

and, decreased heart rate variability, have been associated with depressive symptoms 

(Carney, et al., 2005). As such, electrocardiogram (ECG) derived measures are expected to be 

an important component of depression. This makes ECG derived EWS measures potential 

markers to foresee changes in depressive symptoms. Yet, while earlier nomothetic studies do 

offer valuable knowledge, they inform us less about the development of depressive symptoms 

on an individual level.  

Theoretically, IBI time series can be seen as potential biomarkers for depression. However, 

the hardware needed to collect such IBI time series data in ambulatory settings, combined 

with necessities such as wireless data collection, and online data uploading capabilities has 

not been available until recently. Conversely, statistical analyses commonly applied to assess 

and even predict mood transitions often require long-term datasets with high-resolution data, 

which ECG recordings do offer. Therefore, a thorough assessment and validation of wireless 

monitors suitable for long-term ambulatory ECG assessments is warranted. Therefore, I 

conducted the TRANS-ID Validation study on ECG monitors.  
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Gaps in the current knowledge 

Currently, group-based scientific outcomes are those most reported in the scientific literature 

on mood disorders, such as MDD. However, it is unlikely that such studies can fully inform 

us on an individual person’s risk (Zuidersma et al 2020). That is because with results from 

group-based studies researchers cannot check whether EWS really increase within persons 

before a change in depressive symptoms. The proposed EWS originate from ecology and 

related sciences, and have shown potential in their respective fields in which they were found 

able to foresee large changes in, for example, climate. However, an important gap in our 

current knowledge is whether it is even possible to use such a method within a new scientific 

field with its’ own (data) peculiarities. As such, we hope by investigating EWS in psychiatric 

settings to narrow this knowledge gap down.  

Another gap in our knowledge is whether the optimal hardware and software options are 

available to monitor, pre-process, and analyse the required data. Hence, such devices need to 

be validated before they can be used in clinical research while software to handle specific 

data and tasks might have to be developed. At the start of the research described in this thesis, 

long-term, high-resolution data sets with enough observations to perform the required 

longitudinal analyses were lacking. However, with the completion of the TRANS-ID study 

data collection (which collected physical activity and ECG data from over 100 participants 

for over four months) such high-resolution data sets finally came available, and the 

aforementioned gaps can be narrowed down further. In this thesis, I will focus on calculating 

EWS based on actigraphy and ECG time-series data from several studies (see Table 1). 

Studies were typically designed as between-subject studies (TRANS-ID validation study 

(Kunkels et al., 2021a), Bipolar study (Kunkels et al., 2021b), as well as repeated single-

subject studies (TRANS-ID, (see: https://osf.io/zbwkp/ and https://osf.io/85ngu). 

Aims and outline of the Thesis 

In the presented studies, we aim to investigate whether actigraphy and ECG derived 

EWS can predict transitions in (depressive) mood symptoms, and whether available hardware 

and software are sufficient for this task. The first part of this thesis (chapters 2 until 5) 

focuses on investigating whether actigraphy-based EWS, and derived related complexity 

measures, can be predictive of upcoming transitions in mood symptoms. Moreover, software 

developed to automate various pre-processing steps of processing actigraphy data is 

presented. In the second part of this thesis (chapter 6 and 7), we will investigate whether IBI-
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derived EWS and derived complexity measures, can be predictive of upcoming transitions in 

(depressive) mood symptoms.  

Chapter 2: ACTman: Automated pre-processing and analysis of actigraphy data 

In chapter 2, the ACTman software suite for automatically pre-processing and analysing bulk 

quantities of physical activity data is presented. This software suite will subsequently be used 

for pre-processing and analysing the collected actigraphy data sets in the subsequent studies. 

It also allows for the calculation of various relevant actigraphy and EWS quantifiers within a 

customizable moving window.  

Chapter 3: Efficacy of early warning signals and spectral periodicity for predicting 

transitions in bipolar patients: An actigraphy study 

In chapter 3 in a repeated single-subject design, we investigate whether EWS and spectral 

periodicity measures can facilitate the identifications of upcoming mood transitions in 

patients suffering from bipolar depression. Bipolar depression  is a mental disorder wherein 

diagnosed patients experience distinct periods of depression, interwoven with periods of 

abnormally increased mood and energy (American Psychiatric Association, 2013). This 

sample offered unique characteristics, such as a higher change of observing changes in mood, 

than in unipolar depression. The participants measured their physical activity using 

actigraphy for over 180 days, allowing us to investigate whether we could identify upcoming 

transitions based on their activity. 

Chapter 4: Risk Ahead: Actigraphy-based early-warning signals of increases in depressive 

symptoms during anti-depressant discontinuation  

In chapter 4, we investigated the effectiveness of EWS in detecting depressive mood 

transitions, but now in a sample of TRANS-ID Tapering participants who were tapering their 

anti-depressant medication. TRANS-ID data were collected specifically to test for within 

individual changes. Given that there were a number of participants who experienced a 

transition during tapering, but others did not, we were able to compare both groups to see 
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whether EWS perform differently in both groups. Additionally, sensitivity and specificity 

characteristics were checked to assess EWS performance. 

Chapter 5: Complexity makes the difference: Uncovering complexity details in actigraphy 

patterns to differentiate the depressed from the non-depressed 

In chapter 5, actigraphy data collected for 30 days during the Mood and Movement in Daily 

Life (MOOVD) study were used. Group differences between depressed and non-depressed 

individuals on actigraphy based mean levels, circadian rhythm and complexity measures were 

tested. Novel complexity markers based on recurrence plots are presented and their 

effectiveness in detecting mood transitions are investigated.  

Chapter 6: Cross-instrument feasibility, validity, and reproducibility of wireless heart rate 
monitors: Novel opportunities for extended daily life monitoring 

In chapter 6, two novel wireless ambulatory ECG monitors (the Cortrium C3 and the Ithlete 

finger sensor) were investigated to assess their feasibility, validity, and reproducibility 

characteristics. These monitors were tested against a wired ECG reference monitor (the VU-

AMS) to see whether obtained data was valid under various protocolled conditions. Moreover, 

the ability of participants to measure their ECG data in ambulatory settings, that is in real-

life, was investigated. 

Chapter 7: Using complexity of cardiac dynamics as a predictor of recurrence of depression 

In chapter 7, we investigated whether complexity and variability indicators of cardiac 

dynamics decreased in the period before a transition in depressive symptoms in a sample of 

the TRANS-ID Tapering participants. We studied decreases in these indicators as they are 

known to be substantially lower in individuals suffering from depression.  

Chapter 8: General summary, discussion and conclusion 

In chapter 8, the main findings are summarised and are reflected upon in context of relevant 

literature. The potential impact of the current findings for clinical practice will be described, 

and recommendations for future studies are given. 



18 

Table 1: An overview of the studies and main data types presented in this thesis (more details 

and references given in the main text). 

Study Chapter Main data type Number of 
participants 

Data collection 
context 

ACTman  2 Actigraphy 1 Ambulatory 
Bipolar study 3 Actigraphy 8 Ambulatory 
TRANS-ID 

Tapering study 
4 Actigraphy 16 Ambulatory 

MOOVD study 5 Actigraphy 54 Ambulatory 
TRANS-ID 
Validation 

study 

6 IBI 51 Ambulatory & 
Laboratory 

TRANS-ID 
Tapering study 

7 IBI 14 Ambulatory 

Note:IBI = inter-beat interval, TRANS-ID = TRANSitions In Depression, MOOVD = Mood 
and Movement in Daily Life.
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Abstract 

Objectives: To introduce a novel software-library called Actigraphy Manager (ACTman) 

which automates labour-intensive actigraphy data preprocessing and analyses steps while 

improving transparency, reproducibility, and scalability over software suites traditionally 

used in actigraphy research practice. 

Methods: Use cases are described for performing a common actigraphy task in ACTman and 

alternative actigraphy software. Important inefficiencies in actigraphy workflow are 

identified and their consequences are described. We explain how these hinder the feasibility 

of conducting studies with large groups of athletes and/or longer data collection periods. 

Thereafter, the information flow through the ACTman software is described and we explain 

how it alleviates aforementioned inefficiencies. Furthermore, transparency, reproducibility, 

and scalability issues of commonly used actigraphy software packages are discussed and 

compared with the ACTman package. 

Results: It is shown that from an end-user perspective ACTman offers a compact workflow as 

it automates many preprocessing and analysis steps that otherwise have to be performed 

manually. When considering transparency, reproducibility, and scalability the design of the 

ACTman software is found to outperform proprietary and open-source actigraphy software 

suites. As such, ACTman alleviates important bottlenecks within actigraphy research 

practice. 

Conclusions: ACTman facilitates the current transition towards larger datasets containing 

data of multiple athletes by automating labour-intensive preprocessing and analyses steps 

within actigraphy research. Furthermore, ACTman offers many features which enhance user-

convenience and analysis customization, such as moving window functionality and period 

selection options. ACTman is open-source and thus fully verifiable, in contrast with many 

proprietary software packages which remain a black box for researchers. 

Practical implications: 

 The feasibility of large scale actigraphy studies is often constrained by the 

associated analysis software. 
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 Open-source actigraphy software makes actigraphy analysis more transparent 

and verifiable.  

 Automated batch processing of actigraphy data allows researchers to study 

more and longer datasets from multiple athletes in less time, while reducing 

human error. 

Introduction 
Over the years, actigraphy has gained popularity as it allows researchers to study 

athletes and regular participants in their own living environment, with minimal disturbance.1 

Actigraphy is considered to assess more ecological valid measures of physical activity, sleep 

duration, and circadian rhythm compared to subjective measures as it minimizes the risk of 

recall and social desirability bias.2,3 Although polysomnography is the golden standard in 

sleep research,4 its invasive nature and high costs make it an unfeasible method when 

studying large samples of multiple athletes in ecological valid daily life settings for longer 

periods of time (i.e. weeks, months). Actigraphy on the other hand, is non-invasive, relatively 

cheap, and easy to use.3–5 In actigraphy studies, participants often continuously wear wireless, 

lightweight, accelerometers that measure (tri-axial) movement in small intervals (and thus 

high resolution). Such accelerometers have been validated against polysomnography (PSG) 

and are an accepted alternative for long-term sleep assessment during daily life.3,4,6 The 

usefulness of actigraphy in studying circadian rhythms is supported by the finding that 

actigraphy-defined sleep-wake cycles accurately predicted sleep-wake cycles defined by 

simultaneously measured polysomnography.7  

However, while accelerometer hardware is important, the software required for 

subsequent analyses plays an often overlooked role in determining whether the analysis of 

large data sets is feasible and whether the results are of sufficient quality. There is a limited 

number of software packages which cater towards the actigraphy researcher. The most 

common is the default software included with some actigraphy devices. Examples hereof are 

the MotionWare software, included with the MotionWatch 8 accelerometer, and the Actiware 

software, included with the Philips Actical and Actiwatch 2 accelerometers.1,8 Next to the 

proprietary software, there are a limited number of open-source alternatives, for example: 

nparACT,9 acc,10 and GGIR11 for R statistical software.12  
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There are, however, some limitations to existing software suites regarding 

transparency, reproducibility, and scalability. Transparency can be defined as the availability 

and complete observability of the source code of the software for all stakeholders. Moreover, 

transparency is found to be a crucial software design choice that influences stakeholder 

behavior.13,14 Making the source code transparent thus makes it verifiable and auditable. 

Relevant and easily checkable indicators of transparency are whether the software is open-

source; and whether the software has a public code repository where the full source code is 

available and observable.  

Reproducibility is defined as being able to obtain identical numeric results at a later 

time point while using the same data,15 and is regarded to be one of the defining 

characteristics of science.16,17 Indeed, reproducibility and transparency are closely related as a 

lack of transparency hinders identification of the root causes for low reproducibility. 

Furthermore, a lack of reproducibility can be caused by human error. For example, consider 

two actigraphy researchers named Alice and Bob. Alice originally conducted a study 

collecting actigraphy data of one athlete for 365 days using actigraphy. Alice then uses a 

software suite to run the analyses which requires her to manually input the athlete’s bed and 

wake up times from a pen-and-paper sleep-log. As Alice is very focused and precise she 

inputs the information from the sleep-log into the software without error and after running the 

analyses receives a set of results. Bob, on the other hand, read about Alice’s results and 

decides to try to reproduce them. While Bob is also very dedicated, he unintentionally mixed 

up some times from the sleep-log when inputting these manually into the actigraphy software. 

Hence, as he tries to replicate Alice’s results Bob will find deviating results meaning that he 

could not fully reproduce the results reported by Alice. However, this lack of reproducibility 

is caused by human error, not deficiencies in theory or experimental design. Given this 

example the importance of reducing human error to improve reproducibility becomes clear. 

Moreover, it was found that humans are especially susceptible for making errors during 

repetitive and monotonous tasks, while automation is regarded as a method to reduce such 

human error and thus improve reproducibility.18,19 A relevant indicator of reproducibility is 

how much monotonous manual processes are automated to prevent human error.  

Scalability is defined as the ability to process an increasing amount of work and 

elements, while facilitating effortless enlargement.20,21 Given such a definition, a scalable 

process will keep performing at an acceptable level under load while the performance of a 

less scalable process will deteriorate, possibly causing longer turnaround times and/or 
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increased error rates. Moreover, less scalable processes will require large amounts of work to 

add improvements, while a scalable process is designed with ease of implementation in mind. 

Relevant indicators of scalability are, for example, the ease of adaptability of the process to 

interact with and support new types of hardware, and the degree to which performance under 

increased workload is bounded by manual processing steps.  

To address these issues, we developed the Actigraphy Manager (ACTman) software-

library (software repository available online22) for the statistical programming language R.12 

ACTman automates preprocessing and analysis of actigraphy data, thereby automatically 

performing a multitude of labour-intensive tasks usually done by hand. ACTman aims to 

improve transparency, reproducibility, and scalability over existing actigraphy software 

packages by offering a solution that is open-source, automates monotonous manual 

processes, and is easily expandable. Moreover, the data preprocessing steps in ACTman add 

functionalities which can benefit actigraphy researchers, for example: (1) the possibility for 

selecting a subset of the data from a specific time period, (2) removing tails of zero activity, 

(3) binning the data into 60 s epochs, (4) reformatting dates and times to a standardized

format, (5) plotting 48-h or 24-h actograms, (6) offering moving window functionality, that

is, being able to analyze a distinct period, for example 14 days, in a larger dataset and then

moving this period forward in user-defined steps while iterating the analysis, and (7) being

able to take plain marker button data and automatically convert this into a machine-readable

sleep-log which can then be used in subsequent sleep analyses.

ACTman automatically preprocesses input data into a uniform file format for 

subsequent analyses. ACTman currently supports two actigraphs, namely the MotionWatch 8 

(CamNTech), and the Actiwatch 2 (Philips Respironics), while offering a scriptable 

framework which can be readily extended to include other actigraphs. After the preprocessing 

steps ACTman applies validated sleep and circadian algorithms in order to calculate 

commonly used output variables. The major and novel contribution of ACTman is that it 

offers researchers both a comprehensive actigraphy software solution for automating 

necessary preprocessing steps, as well as a tool for calculating validated circadian rhythm and 

sleep analysis output measures. Moreover, replacing manual preprocessing by automated 

preprocessing reduces chances for human error. 
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Materials and methods 

The main goal of the ACTman data preprocessing part is transforming device-specific 

data into generic data files (also see Fig. 1). These generic data files are then used for 

subsequent sleep or circadian rhythm analyses.  

During preprocessing, ACTman first indexes all the actigraphy data files and sleep-

logs in the specified working directory. Thereafter, the actigraphy data files are read and 

transformed into a data frame, out of which only relevant data columns (date, time, and 

activity) are extracted. Reading in the actigraphy data files requires a device-specific 

approach as the native layout of these actigraphy files differs per device. ACTman then 

checks if the data is binned in epochs of 60 s; a common epoch length required for various 

actigraphy analyses. If 30 s epochs are found instead, ACTman will automatically bin these 

into 60 s epochs. Then, the dates and times are combined and reformatted into a standardized 

format (e.g. 2019-01-31 12:30:00). Hereafter, a check for missing data is performed and the 

user is informed when the dataset contains a considerable amount of missings. If missing data 

is found and the user has specified to omit missing values, then these are removed in a row 

wise manner wherein incomplete cases are also removed. The user can also specify missings 

to be imputed using predictive mean matching.23 In the next step it is checked if there is 

activity in the tail of the dataset, as researchers can sometimes forget to immediately stop the 

actigraph after receiving it from the athlete. If such chunks of trailing zeroes are found, they 

are removed from the dataset. Hereafter a new folder is created within the working directory 

wherein the processed actigraphy files are saved for use in subsequent analyses.  

Regarding circadian rhythm analysis, the literature describes both parametric as well 

as non-parametric methods.5 In the ACTman R-package, we chose to implement non-

parametric methods as they do not require any a priori assumptions about the waveform of 

the activity data. Seven commonly used, well-established non-parametric variables are 

implemented in ACTman. These are inter-daily stability (IS; the stability of the rhythm from 

day to day), intra-daily variability (IV; the fragmentation of the rhythm), total activity of the 

ten most active (M10) and five least active hours (L5), onset times for M10, and onset times 

for L5. Their calculation is explained in detail elsewhere.5,24 

Sleep measurements in actigraphy studies are often accompanied by a sleep-log, 

either in digital or paper-and-pencil form, in which times for going to bed and waking up are 

logged. ACTman automatically reads data from digital sleep-logs and combines these with 
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the data from the actigraph for the sleep analysis. Sleep identification is performed by 

calculating per epoch whether the subject is asleep or awake. To attain this, activity scores 

are created based on the total activity counts of the specified epoch and its direct neighbours, 

through the use of weighted factors specific to the epoch length.25 

The performance of ACTman in comparison with alternative software suites will be 

illustrated and evaluated by presenting use case descriptions for a common actigraphy task, 

namely performing sleep analysis. By describing software using use case descriptions, we can 

systematically clarify interactions between the software and its users while also highlighting 

workflow.26 Furthermore, ACTman will be evaluated regarding transparency, reproducibility, 

and scalability using the aforementioned indicators, while being compared to existing 

proprietary software. By doing so, we illustrate important inefficiencies in actigraphy 

processing and analyses. Short description regarding software runtimes and analysis output is 

available in the supplementary materials.  
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Fig. 1. Overview of ACTman information flow. The dotted line delineates the ACTman software. First, the data 
from either the MotionWatch 8 or the Actiwatch 2 is entered into the data-preprocessing module to obtain a 
uniform file format for use in subsequent analyses. Thereafter, the data in the uniform file format is used as 
input for the circadian rhythm analysis or the sleep analysis. If sleep analysis is required, the data from the 
sleep-log is read in and used in the subsequent analyses. 
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Results 

Tables 1 and 2 show use case descriptions for performing sleep analysis in two 

different actigraphy software packages, respectively MotionWare and ACTman. The dataset 

contained multiple days, which thereby provided options for both single- and multirepetition 

analyses. A comparison of both tables reveals that the basic flow of the MotionWare software 

includes more manual steps requiring user input, which further increases as the analysis gets 

repeated over multiple days. Moreover, as the MotionWare software can only perform sleep 

analysis one day at a time, user workload will increase strongly when multiple nights of sleep 

are analyzed. In such a case, the user will need to repeat steps 11 till 16 until all required 

nights are analyzed. Such a requirement for manual involvement forms a bottleneck in 

facilitating actigraphy research in larger datasets as preprocessing and analysis performance 

is then ultimately bounded by the user performing manual tasks. Conversely, the ACTman 
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package does not require additional manual steps for every extra night of sleep, as it 

automates such preprocessing steps. Regarding reproducibility, we identified that automation 

of monotonous manual processes decreases human error and facilitates better reproducibility 

rates. The aforementioned use case descriptions have furthermore shown that the ACTman 

workflow does automate processes in actigraphy research that previously required large 

amounts of monotonous manual labour. Especially when compared to steps 11 till 16 in the 

MotionWare use case description, we can see that the ACTman package substantially 

alleviates the workload for the actigraphy researcher. As such, by using ACTman, actigraphy 

researchers can decrease chances for human error which facilitates better reproducibility 

rates.  

For transparency it is important that code is available and observable, hence we 

evaluated transparency by reporting whether the compared software packages are open-

source and whether there is a repository where stakeholders can find the full source code. As 

making a software package open-source instead of proprietary is often a dedicated design 

choice, both the ACTman package as well as alternatives such as nparACT9 are necessarily 

transparent in this sense. For example, both have easy to find repositories where the source 

code is available for stakeholders.22,27 Conversely, proprietary actigraphy software is by 

definition not as transparent, thereby obscuring the exact workings of the software from 

stakeholders. Such obscurity can have substantial ramifications as it could take a long time 

before bugs in calculations are caught, if ever. The open-source actigraphy software 

packages, on the other hand, are fully verifiable, even offering users to make their own 

improvements and expansions of the software, where needed.  

When considering scalability, the ability of a software package to accommodate an 

increasing amount of work and to support new types of hardware were identified as important 

characteristics. Here, software suites which require user input in many of the processing steps 

are necessarily limited in the amount of actigraphy files they can process within a set time 

period. Hence, scalability of these software suites is ultimately bounded by how quick a 

researcher can manually process actigraphy files without error; thus constituting a human-

bound scaling limit. As such, the ACTman package, which automate these manual steps, is 

more scalable as its performance under increased workload is not bounded by manual 

processing steps. Another feature of scalability in actigraphy software is being able to support 

multiple types of actigraphy hardware. Here, proprietary software suites are at a disadvantage 

as they only offer dedicated support for one device, or in the best case, for multiple related 
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devices from the same manufacturer. In this case, open-source packages could theoretically 

offer better scalability then proprietary ones as they are not per se constrained to one type of 

actigraph device or manufacturer. However, many opensource actigraphy packages do cater 

only to one specific device (e.g., the “ActivityIndex” R-package28) or require actigraphy data 

which is already preprocessed into a specific data format (e.g., the “nparACT” R-package9), 

thereby limiting their scalability. ACTman on the other hand, preprocesses actigraphy files 

into a uniform format which is then used for subsequent analyses. This allows for easy 

support of other actigraphy devices as adding support for a new device would only require 

adding a module to read the device output files and transform it to the uniform file format. 

This not only future-proofs the ACTman package, but also allows for heterogeneous test 

environments of different actigraph devices, in which the processing of data is guaranteed to 

be the same. 

Discussion 

In this paper we introduced ACTman; a R-library which automates various data 

preprocessing steps and performs circadian rhythm and sleep analysis. ACTman is thereby 

able to quickly process data from two actigraphs, the MotionWatch 8 and the Actiwatch 2, 

into a generic file format which are then analyzed. The ACTman package thereby tackles 

existing issues in actigraphy research regarding transparency, reproducibility, and scalability. 

By offering transparent source code and a public repository, ACTman guarantees 

stakeholders that the code is both auditable and verifiable. This is in contrast with many 

proprietary software packages which obscure their source code and thus prevent stakeholders 

from identifying possible issues. Furthermore, as ACTman is open-source it allows 

stakeholders to use and modify the ACTman source code for their own specific goals and 

contexts. Hence, the ACTman code could thus serve as a stepping stone for other developers 

to create novel actigraphy applications. 

Additionally, we identified an important bottleneck in actigraphy research; namely 

that with common actigraphy software, quality and speed of both preprocessing and analysis 

is ultimately constrained by user performance in conducting specific manual tasks. This 

bottleneck was exemplified by presenting a use case description of actigraphy software which 

requires a large amount of manual involvement, and the ACTman R-package which 

automates most of such manual tasks. ACTman thereby also tackles an important threat to 
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producing reproducible results, namely human error, which is especially common during 

repetitive and monotonous tasks, such as those normally required when processing and 

analyzing actigraphy data. Automating such repetitive and monotonous steps also improves 

scalability of actigraphy research, which can support the current trend in actigraphy research 

towards longer datasets including large numbers of athletes measured over extended time 

periods. Moreover, as ACTman transforms data into a generic data format prior to analyses, it 

is receptive for extensions to include various other actigraphs. Moreover, this design offers 

researchers heterogeneous test environments for different actigraphs, wherein data processing 

steps are guaranteed to be the same. In addition to these main points, ACTman offers 

actigraphy researchers a suite of additional features, including: comprehensive moving 

window functionality with a large degree of user customization, the ability to convert marker 

button presses to a sleep-log, and actigraphy plotting options. 

There are, however, some limitations of the current work. For example, proprietary 

software packages often include extensive graphical user interfaces (GUI), which are easy to 

use for novel users, whereas open-source software sometimes lack refined user interfaces. 

This is also the case for ACTman, especially when compared to software such as 

MotionWare. However, as the R programming language is commonly used amongst sport 

researchers and data analysts, and offers extensive community tech support, this is not 

expected to deter its use. Moreover, R-users routinely use R through integrated development 

environments, such as R studio, which add functional user interfaces. A second limitation is 

that ACTman currently only offers calculation of non-parametric circadian rhythm variables, 

whereas parametric methods such as acrophase, MESOR (Midline Statistic of Mean), and 

cosinor analysis could bring complementary information. However, we prioritized non-

parametric methods as they do not require any assumptions on the waveform underlying the 

rest-activity circadian rhythm. In summary, the current paper presented the ACTman R-

library, which aims at facilitating large scale actigraphy research with the MotionWatch 8 

(CamNTech) and the Actiwatch 2 (Philips Respironics) actigraphs. ACTman realizes this by 

taking away an important hurdle in actigraphy data processing, namely its current labour 

intensity, while addressing transparency, reproducibility and scalability issues. ACTman 

thereby offers sport and actigraphy researchers a software solution that improves on many 

common inefficiencies in current actigraphy software libraries.  

Appendix A. Supplementary data Supplementary material related to this article can be found, 

in the online version, at https://doi.org/10.1016/j.jsams.2019.11.009 
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Abstract 
Early-warning signals (EWS) have been successfully employed to predict transitions 

in research fields such as biology, ecology, and psychiatry. The predictive properties of EWS 

might aid in foreseeing transitions in mood episodes (i.e. recurrent episodes of mania and 

depression) in bipolar disorder (BD) patients. We analyzed actigraphy data assessed during 

normal daily life to investigate the feasibility of using EWS to predict mood transitions in 

bipolar patients. Actigraphy data of 15 patients diagnosed with BD Type I collected 

continuously for 180 days were used. Our final sample included eight patients that 

experienced a mood episode, three manic episodes and five depressed episodes. Actigraphy 

data derived generic EWS (variance and kurtosis) and context-driven indices (autocorrelation 

at lag-720) were used to determine if these were associated to upcoming bipolar episodes. 

Spectral analysis was used to predict changes in the periodicity of the sleep/wake cycle. The 

study procedures were pre-registered. Results indicated that in seven out of eight patients at 

least one of the EWS did show a significant change-up till four weeks before episode onset. 

For the generic EWS the direction of change was always in the expected direction, whereas 

for the context-driven indices the observed effect was often in the direction opposite of what 

was expected. The actigraphy data derived EWS and spectral analysis showed promise for the 

prediction of upcoming transitions in mood episodes in bipolar patients. Further studies into 

false positive rates are suggested to improve effectiveness for EWS to identify upcoming 

bipolar episode onsets. 



41 

Introduction 
Patients diagnosed with bipolar disorder (BD) suffer from recurrent episodes of 

depression and mania, interchanged with stable or euthymic periods1 . Rapid transitions in 

mood, behavior, psychomotor agitation, and sleep may occur 2 – 4 with a debilitating impact 

on patients and their families. One of the key goals of treatment is to maintain euthymic state 

and prevent relapse. Ideally, treatment is tailored to counter upcoming symptom transitions 

but both patients and clinician are often late in signalling that a new episode is developing. A 

promising approach to foresee upcoming transitions comes from complex systems literature, 

which suggests that a set of generic early-warning signals (EWS) could identify whether 

resilience to change is declining. Such decreasing resilience can suggest that a transition from 

one state to another is forthcoming, for example, in global financial markets, biological 

phenomena, and ecological systems 5 .  

Examples of commonly used EWS include rising variance, autocorrelation, and 

kurtosis5–7 . Variance indicates how much values of interest deviate from the mean and each 

other, autocorrelation indicates how similar a variable is to a delayed copy of itself, and 

kurtosis informs on the shape of the probability distribution. It was shown that these three 

EWS substantially increased right before a transition 5 . As EWS are generic they do not 

depend on specific contexts or topics, and are expected to perform similarly within different 

complex systems. If the typical BD characteristics of transitions towards either manic or 

depressive episodes also behave as a complex system, detection of EWS may provide a new 

approach to foresee these transitions. In this conceptualization, we expect the transitions 

towards a bipolar episode are indicated by the proximity of so-called tipping points. At these 

tipping points critical slowing down is expected to occur; meaning that the dominant 

eigenvalue corresponding to recovery rate will go to zero 5 . Such events can —under the 

right circumstances —be identified by declining resilience indicators, such as the 

aforementioned EWS. 

Practically, we would thus expect to find increased variance, autocorrelation and 

kurtosis, before the onset of a bipolar episode. Moreover, we speculate that mean physical 

activity levels could help differentiate between whether the episode change predicted by 

EWS is either manic or depressive in nature. We expect to find higher levels of physical 

activity before patients enter a manic episode and lower activity levels before a depressed 

episode. 
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Besides EWS, other more content-specific indices might also facilitate prediction of 

upcoming episodes, such as psychomotor-oriented indices. A growing number of studies are 

unravelling the deregulation of the circadian sleep/wake cycle by analyzing psychomotor 

agitation and sleep disturbances -symptoms typically seen in Bipolar patients 2 , 8 . For 

example, Bipolar patients showed increased sleep duration, less daytime sleep, and larger 

contrast between day and night activity during their euthymic period compared to their 

manic/mixed episodes8,9 . Moreover, compared to controls, Bipolar patients showed a more 

fragmented sleep/wake cycle as indicated by more variability within days and less stability 

over multiple days in their actigraphy data10. A related finding is that variability in the 

sleep/wake cycle can be indicative for the upcoming onset of a depressive episode among 

bipolar patients during their euthymic periods11. A analysis method well suited for studying 

such changes in the sleep/wake cycle is spectral analysis; a technique wherein the variation in 

the time domain of time-series data is decomposed in their respective frequencies12. Consider, 

for example, actigraphy data of a healthy individual. Healthy humans have a near 24-h 

sleep/wake cycle, so their spectrum will show the largest peak close to the 24-h frequency 

even under atypical circumstances such prolonged isolation from natural external 

Zeitgebers13. Hence, deviations from the 24-h frequency may indicate disturbances in the 

sleep/wake cycle, as for example a 48- h sleep/wake cycle was detected prior to a transition 

from a depressed state into a manic state in bipolar patients14 . Disturbances in spectral 

periodicity are expected to be indicative of increased risk for transition to a manic or 

depressive episode as they signal dysregulation of the sleep/wake cycle; a feature observed in 

bipolar patients. 

Given the impact of disturbances in activity and the sleep/wake cycle on mood 

episodes in bipolar patients, actigraphy is especially suited to investigate such upcoming 

transitions. However, while the aforementioned studies on this topic offer useful hypothesis 

generating information, only short-term actigraphy time-series data or questionnaires were 

used. Moreover, none of the aforementioned studies included live transitions in mood 

episodes while being monitored with actigraphy. As such, prior conclusions can be 

considered to be limited regarding the effects of sleep/wake disturbances on mood transitions. 

To study whether changes in EWS predict upcoming manic or depressive episodes in bipolar 

patients, a study design in which patients are monitored for multiple weeks is required. 

Actigraphy can be employed to continuously assesses time-series data of physical activity 

from which onsets of episodes could be predicted. Such continuous activity measurements 
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are better suited than short-term activity measurements to fully capture some of the hallmark 

symptoms of BD, namely the disturbances in activity and sleep/wake cycles over time. In 

actigraphy studies, patients wear lightweight, wireless, wrist-worn accelerometers which 

measure (triaxial) movement. Actigraphy is relatively simple and has been successfully 

validated against polysomnography for predicting sleep/wake cycles15. As such, its ease of 

use and its objective nature make actigraphy well suited for monitoring patients with bipolar 

disorder. 

To investigate how transitions towards the onset of either a depressive or manic 

episode in Bipolar patients can be predicted, we will examine whether declining resilience —

as indicated by the EWS —can help anticipate such transitions. Moreover, we will investigate 

whether disturbances in the periodicity of the sleep/wake cycle can also aid in predicting such 

transitions. Actigraphy data collected for six months by Bipolar patients will be used. We 

hypothesise that in the period before the onset of either a manic or depressive episode, 

actigraphy patterns of Bipolar patients will show: (1) rising variance, (2) rising kurtosis, (3) 

rising autocorrelation in actigraphy activity patterns, and (4) spectral indices indicating 

disturbances in the typical 24-h wake/sleep cycle. Moreover, we hypothesize that the period 

before an episode patients will show: (5) mean activity levels congruent with the type of 

episode (i.e., finding higher mean levels of activity before a manic episode, and lower mean 

levels of activity before a depressive episode). Our study was pre-registered, meaning that we 

disclosed our hypotheses and analysis plans before conducting the study and before looking 

at the data for meaningful patterns, thereby optimizing transparency and replicability. 

Moreover, we endeavoured to make our materials and procedures as open as possible by 

storing these on a publicly accessible repository (see: https://osf.io/63d8w/). 

Materials and methods 

Sample  

An existing dataset of patients diagnosed with BD type I was used for the current 

study. Details of the current data collection are described elsewhere16. Patients were mainly 

enrolled from the outpatient clinic of the University Center Psychiatry (UCP) within the 

University Medical Center Groningen (UMCG), and secondarily from the Dutch patient 

society (“Plusminus”). The inclusion criteria were: (1) diagnosed with bipolar disorder type I, 

(2) having suffered from at least 1 episode in the past 2 years, and (3) being motivated to



44 

participate in a long-term study. The exclusion criteria were: (1) suffering from somatic 

diseases which could interfere with the actigraphy measurements, and (2) suffering from 

somatic sleep disorders, such as for example sleep apnea. Patients participated in 180 days of 

mood monitoring once a day, weekly symptom monitoring, and continuous activity 

monitoring. In total, 15 patients provided informed consent for their participation in the 

study. Of these 15 patients, one dropped out during the study due to personal reasons, whilst 

the data of one patient was found to be largely incomplete and had to be excluded as well. Of 

the 13 remaining patients, 11 did experience a transition towards a mood episode (4 

experienced a manic episode and 7 experienced a depressive episode). The two patients who 

did not show any transition towards a mood episode during the study period were excluded. 

Lastly, of the remaining 11 patients three experienced so many mood symptoms that their 

designated “euthymic ” episode was not evidently euthymic anymore. These patients were 

thus excluded from the analyses. Eight patients were included in the final sample.  

Symptom indices 

Depressive and manic episodes were de fined with validated questionnaires. Every 

week patients filled out the Inventory of Depressive Symptomatology - Self Rating (IDS-

SR17), and the Altman Self Rating Scale for Manic symptoms (ASRM18). In order to be 

designated as being in a manic episode, patients had to score higher than 5 points on the 

ASRM for two consecutive weeks, assuring that there is at least one full week of manic 

symptoms present. The criteria of scoring at least 5 points on the ASRM for two weeks was 

included because ASRM ratings can reflect the mental state on the day of completing the 

ASRM more than the mental states of several days before19. Depressive episodes, on the 

other hand, required patients to maintain a score higher than 25 points on the IDS-SR for at 

least three consecutive weeks, assuring that there are at least two full consecutive weeks of 

symptoms. A transition was de fined as starting to fulfil the aforementioned criteria for 

depressive and manic episodes. For our analyses, we studied the first transition of each 

patient.  
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Activity  

Actigraphy time-series data were collected with a wrist-worn MotionWatch 8 (MW8; 

CamNTech) actigraph. Patients were instructed to wear the MW8 continuously, only 

removing the device under rare conditions, such as sauna visits where a combination of high 

humidity and temperature could induce technical difficulties. The MW8 was initialized to use 

one-minute epoch lengths, no data compression, and no light detection. An electronic sleep 

diary was filled-out every morning. 

Analyses  

Pre-processing and analysis of the data was performed in the statistical programming 

language R20. For preprocessing and analyzing the actigraphy data, the R package ACTman21 

was used. Generic EWS such as autocorrelation and kurtosis, are sensitive to detrending 7 . 

Therefore, we removed linear trends from the data by calculating the least squares regression 

line to estimate the growth rate, and then subtract differences from the least squares fit line 

from the data. For the spectral analysis, we calculated the spectral periodogram with a fast 

Fourier transformation without smoothing in R statistical software20.

EWS indices were calculated from 1 min actigraphy time-series averages for each 

participant independently. Variance and kurtosis were calculated over the minute-level 

actigraphy data in a moving window. We used a window size of 7 days which means that 

every window includes at least one Saturday and one Sunday, thereby equalizing any possible 

effects from weekend days. The size of the steps at which the moving window was moved 

over the data was set to one day; the algorithm first calculated the EWS for the first 7-day 

window, then moved the window 1 day ahead, and repeated these steps until the last full 

window was calculated. Autocorrelation indicates how much a variable correlates with itself 

at a later lagged instance of itself. Based on conceptual reasoning, we chose to investigate 

autocorrelation at lag 720 min (acf-720). Autocorrelations at lag-720 are informative about 

how activity is correlated to the amount of activity 12 h ( =720 min) earlier: for example, the 

correlation between the amount of activity at 12:00 to the amount of activity at 00:00 

midnight. The autocorrelation of activity separated by 12 h is expected to be negative, 

whereas autocorrelation of activity separated by 24 h is expected to be positive. However, if 

the normal sleep/ wake cycle gets deregulated and the contrast between sleep and waking 

hours diminishes, we expect acf-720 to approximate zero or even positive values; either due 
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to an individual becoming more restless during sleeping hours (an expected symptom of a 

manic episode), or by getting less active during waking hours (an expected symptom of a 

depressive episode).  

We investigated whether strong increases in EWS occur up till four weeks before the 

onset of an episode. This four-week period was chosen to allow for a plausible extent of time 

for increases in EWS to develop form. To test whether the increase in EWS is significant the 

Mann-Kendall test22,23, a commonly used non-parametric test for detecting significant 

monotonic trends in time-series data, was used. In order to estimate disturbances in spectral 

periodicity we examined the ratio between the fundamental and second harmonic frequencies. 

Here, the fundamental frequency represents the lowest frequency of a periodic waveform, 

whereas the harmonic frequencies are frequencies that operate at (whole-number) multiples 

of the fundamental frequency. The ratio between these two estimates the likeliness that a 

disturbance in periodicity is afoot as it indicates the strength of the fundamental 24-h 

frequency versus the strength of an alternative frequency (the 12-h frequency in this case). 

The ratio between the fundamental and second harmonic frequencies was calculated by 

dividing the power spectral density value of the second harmonic by the same the 

fundamental frequency. Harmonic frequencies were calculated by one divided by n times the 

fundamental period. Lastly, for the mean activity level analyses we considered 7-day periods 

around the onset of the episode, operationalized as starting one week before episode onset. 

These mean levels were then compared with mean activity levels 7-day periods from the 

euthymic period. 

TABLE 1 

OUTCOMES OF THE MANN-KENDALL TREND TESTS FOR EWS ASSESSMENT 

ID Episode type Early warning signal 
z-scores N p-values Direction 

1 D Variance 273 28 
0.001** 

increase 

1 D Kurtosis 236 28 
0.066 

increase 

1 D Autocorr_lag720 1.663 28 
0.096 

increase 

2 M Variance 214 28 0.336 increase 
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2 M Kurtosis 203 28 0.597 increase 

2 M Autocorr_lag720 -2.736 28 0.006** decrease 

3 D Variance 212 28 
0.377 

increase 

3 D Kurtosis 139 28 0.05 increase 

3 D Autocorr_lag720 -5.719 28 
< 0.001** 

decrease 

4 M Variance 240 28 0.045* increase 

4 M Kurtosis 95 28 0.001** increase 

4 M Autocorr_lag720 2.894 28 
0.004** 

increase 

8 M Variance 109 28 0.001** increase 

8 M Kurtosis 243 28 0.034* increase 

8 M Autocorr_lag720 -2.341 28 
0.019* 

decrease 

9 D Variance 194 28 0.860 increase 

9 D Kurtosis 238 28 0.055 increase 

9 D Autocorr_lag720 -3.935 28 < 0.001** decrease 

11 D Variance 107 21 0.929 increase 

11 D Kurtosis 119 21 0.420 increase 

11 D Autocorr_lag720 -0.799 21 0.424 decrease 

15 D Variance 297 28 
0.001** 

increase 

15 D Kurtosis 111 28 
0.002** 

increase 

15 D Autocorr_lag720 -1.490 28 0.136 decrease 

Note: **: p <= 0.01; * p <= 0.05; episode type indicates whether a depressive episode (D) or 
a manic episode (M) occurred; ID’s are numbered according to their original ID designations 
to facilitate comparison between studies.  
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Results 

Early-warning signals  

Results are presented in Table 1, and plots of the EWS for all patients can be found on 

an online repository (see: https://osf.io/63d8w/). An example of an EWS which significantly 

increased before an episode is given in Fig. 1. In one patient (ID 11) the transition occurred 

so early during data collection that only three weeks of data are available before the 

transition. Mann-Kendall trend tests showed significant trend increases in EWS up till four 

weeks before the onset of either a manic or depressive episode in seven patients. In two 

patients, their episode onset was preceded by significant changes in all three EWS. In five 

patients, their episode onset was preceded by significant changes in acf-720 only. In one 

patient, the episode onset was preceded by significant increases in variance only. Lastly, in 

one patient, the episode onset was preceded by significant increases in both variance and 

kurtosis. However, although the direction of the change was always in the expected direction 

for variance and kurtosis (i.e. increasing), for acf-720 it significantly decreased in four 

patients preceding episode onset, while in one patient it significantly increased. Finding 

effects in the opposite direction for acf-720 might suggest that it operates more like a general 

measure of instability, wherein any change from the normal rhythm is indicative of an 

upcoming episode, not necessarily only increases. Post-hoc analyses using Fisher’s test for 

combined pvalues were performed for each EWS to investigate whether overall significant 

trends were present. By combining the p-values of each EWS, outcomes are less dependent 

on the individual patient and should thus be more generalizable. Fisher’s test for combined p-

values is performed by taking the p-values for one indicator and from this calculate the chi-

values. Lastly, taking one minus the calculated chi-squared cumulative density distribution 

using a transformation to N(0,1) will yield the required combined group p-values. Group p-

values obtained via this method were (1) Variance, group pvalue < 0.001, (2) Kurtosis, group 

p-value < 0.001, (3) Acf720, group p-value < 0.001. This suggests that the individual

quantifiers were significant overall, and that the three quantifiers are reliable indicators of

upcoming transitions.

Disturbances in periodicity 

In one patient (no. 11) the onset of an episode was preceded by the hypothesized 

rhythm transition and the increased frequency ratio associated with it. This change in 
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periodicity was observed nine days before the start of the episode. During that day the ratio 

between the fundamental frequency and its second harmonic reached a value of 0.98, which 

indicates an upcoming change from a 24-h rhythm to an atypical 12-h rhythm, as presented in 

Figs. 2 and 3. None of the other patients showed the hypothesized change. 

Post-hoc exploratory analysis of the spectral results showed that one other patient (no. 

3) also showed similar disturbances in periodicity, albeit from a 24 h rhythm towards an

atypical 4-h rhythm. This change in periodicity preceded episode onset by 28 days.

Moreover, next to the aforementioned rhythm transition of patient 11, this patient showed

another transition wherein the end of the euthymic period was preceded by a change in

periodicity. Here, the periodicity change preceded the end of the euthymic period by 17 days,

while the ratio between the fundamental frequency and the second harmonic reached a value

of 0.96. Here the ratio between the fundamental frequency and the second harmonic already

approximated one, five days before the end of the episode. From these results it may be

concluded that the used spectral periodicity indices act more as a general indicator of

instability in mood than a specific indicator for one particular type of transition.
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Mean activity levels 

The results of mean level changes in anticipation of the de fined transition episodes are 

presented in Table 2. All patients who developed a depressive episode showed higher activity 

levels during the first seven days before their episode when compared to the first seven days 

of their euthymic period. One of the three patients who developed a manic episode showed 

less activity during the first seven days before entering a manic episode when compared to 

the first seven days of their euthymic period. In six of the eight patients mean activity levels 

did not develop in the expected direction and thus, did not contribute to the differentiation 

whether an upcoming episode is manic or depressive in nature. Post-hoc exploratory analyses 
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were performed to ascertain that the aforementioned results were not caused by artefacts due 

to mean levels of activity during episodes that were in the expected direction. After 

correcting for this, five of the eight patients showed an effect in the expected direction; three 

showed less activity during their depressed episode than in their euthymic period, and two 

showed more activity during their manic episode than in their euthymic period (see Table 3). 

TABLE 2 

MEAN ACTIVITY DURING SEVEN DAY PERIODS BEFORE EPISODES AND DURING EUTHYMIC 

PHASES 

ID Episode type Mean euthymic Mean episode Interpretation 

1 D 96.111 139.135 More activity before episode 

2 M 153.808 124.585 Less activity before episode 

3 D 100.444 109.135 More activity before episode 

4 M 51.167 61.670 More activity before episode 

8 M 91.874 92.871 More activity before episode 

9 D 171.252 211.028 More activity before episode 

11 D 186.168 192.013 More activity before episode 

15 D 110.661 166.197 More activity before episode 

Note: episode type indicates whether a depressive episode (D) or a manic episode (M) emerged; mean 

actigraphy values are given in MotionWatch count units 

TABLE 3 

MEAN ACTIVITY DURING EPISODES AND EUTHYMIC PHASES 

ID Episode type Mean euthymic Mean episode Interpretation 

1 D 108.403 87.236 Less activity during episode 

2 M 145.258 144.386 Less activity during episode 

3 D 94.089 96.359 More activity during episode 

4 M 49.156 54.576 More activity during episode 

8 M 94.559 112.914 More activity during episode 

9 D 196.669 196.399 Less activity during episode 

11 D 186.464 168.594 Less activity during episode 

15 D 121.871 137.651 More activity during episode 
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Note: episode type indicates whether a depressive episode (D) or a manic episode (M) emerged; mean 

actigraphy values are given in MotionWatch count units 

Discussion 

In the current study, we applied generic Early-Warning Signals (EWS) and spectral 

periodicity analysis calculated from actigraphy time-series data to investigate whether we 

could predict upcoming mood transitions in patients suffering from bipolar disorder (BD). 

We tested whether three EWS (i.e. variance, kurtosis, and autocorrelation at lag-720), showed 

significant changes up till four weeks before the onset of a manic or depressive episode. We 

found that in seven out of eight patients a significant change in at least one of these three 

EWS could be identified up till four weeks before the onset of an episode. For the variance 

and kurtosis EWS, the effect was in the expected direction, thereby con firming our first two 

hypotheses. For the acf-720 EWS, the effect was in the expected direction in one patient, but 

in the opposite direction in four patients, thereby rejecting our third hypothesis. Such a result 

suggests that acf-720 seems to act as a more general EWS which can signal both increases 

and decreases, which implies that shifts in either direction can precede episode. Acf-72 was 

able to detect episode onsets in three patients that the variance and kurtosis EWS did not pick 

up. Moreover, when considering more large scale trends, both increases and decreases could 

be observed. Yet, our finding that autocorrelation effects were often in the opposite direction 

of what was expected do cast doubt on whether the observed transitions in bipolar patients 

are best described and predicted with zero-eigenvalue tipping points. For the fourth 

hypothesis we expected to find disturbances in the typical 24-h sleep/wake cycle before the 

onset of an episode. However, the hypothesized pattern was only observed in one out of eight 

patients. We thus rejected our fourth hypothesis. Our fifth hypothesis concerned testing 

whether mean activity levels are congruent with the episode type before the start of the 

episode. We have rejected this hypothesis as only two out of eight patients showed the 

expected effect. Nonetheless, post-hoc analyses showed mean activity levels congruent with 

the episode type when data during the episode was analyzed instead of data from before the 

episode.  

The EWS results did support the hypothesis from complex system theory that 

actigraphy derived EWS, did precede transitions such as onsets of bipolar disorder episode 

onset. Commonly used EWS such as variance and kurtosis seem to operate complementary to 

more contextdriven EWS, such as autocorrelation at lag-720. These findings suggest that a 
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combination of effective, personalized EWS could be potential useful in clinical practice. 

Such a clinical tool could be used to monitor a patient ’ s risk for developing a clinical 

relevant manic or depressive episode, and warn clinicians in time to temper or even prevent 

upcoming BD episodes. As this clinical tool used actigraphy data, it offers patients a low 

burden method to monitor BD episode risk. Moreover, more research is required to assess the 

effectiveness of these, and other EWS in larger samples to investigate whether more effective 

combinations of EWS can be found. Here combining an actigraphy-based method with 

subjective time-series data, derived with the experience sampling method, may be the next 

step forward to enhance BD episode risk assessment. 

Regarding the spectral indices, we found that the investigated spectral periodicity 

indices appeared to be somewhat sensitive to multiple types of transitions (amongst others, 

towards the start of the episode or towards the end of the euthymic period). However, results 

were not as clear-cut as found in earlier studies, wherein for example, distinct 48-h 

sleep/wake cycles were found in bipolar patients who transitioned from depressed to manic 

episodes14. Here, the spectral periodicity indices thus behaved more like general mood 

instability indicators than as an exclusive indicator of episode onsets†.  

Despite the innovative character of our study, there are a number of issues that need to 

be addressed. First, precollected data were used, whereas only performing the analysis while 

the patient is still monitoring herself would allow for real-time detection of changes in BD 

episodes. However, there is a current lack of actigraphy hardware that can send information 

in real-time for long-term continuous monitoring and calculation of indices. Therefore, 

extensive cooperation between researchers, clinicians, patients, and actigraphy hardware 

manufacturers is needed to develop the infrastructure required for such real-time monitoring 

of bipolar patients. Second, another issue is the relatively low number of patients in our 

sample. Yet, this is somewhat offset by the relatively large number of data points collected by 

each patient (1440 observations each day, for approx. 180 consecutive days). While the large 

number of observations does offer confidence in the robustness of the within patient findings, 

a replication study with a larger number of patients for the same time period could provide 

improved generalizability of the obtained results. Third, the current study did not investigate 

the false positive rate, the number of times the EWS would have falsely suggested that a 

transition is afoot, while in fact none is. As such false negatives can reduce the effectiveness 

of EWS as a clinical tool, this point should be investigated further in future studies. Fourth, 

although both variance and autocorrelation are promising resilience indicators for upcoming 
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critical transitions, variance was found to be not as robust as autocorrelation23. That is, when 

environmentally triggered changes that affect the equilibrium of a system itself was found to 

be able to decrease rather than to increase before an upcoming transition. This lower 

robustness for variance will be more profound if the system ’s own rate of change is 

relatively slow when compared to the frequency of the environmentally triggered changes. 

Fifth, as our data is time-correlated the obtained trends in the indicators could be due to 

chance. Bootstrapping is typically a viable strategy to prevent such chance findings 7 ,24. 

However, as the sleep/wake cycle of physical activity introduces a strong daily periodicity in 

our data, commonly used bootstrapping methods would not be suitable25. Given the 

intricacies of selecting and performing a bootstrap strategy suitable for the current data, such 

additional analyses would be beyond the scope of this work. Yet we do recognize that a 

suitable bootstrap analysis in for example a future study, could provide additional evidence 

for the hypotheses investigated in the current study. 

Development and application of EWS in the field of psychiatry is still quite novel. 

Future studies could aim to elucidate basic EWS properties in psychiatric samples by aiming 

to answer fundamental questions relevant for the search of EWS such as: (1) “At what time 

scale do changes occur in this psychiatric sample? ”, (2) “What exact marker (actigraphy, 

heart rate, mood, etc.) would be best to search for EWS in? ”, (3) “How can we help increase 

the number of n = 1 studies with large enough samples to establish EWS sensitivity and 

specificity? ”, (4) “Which combination of EWS would outperform most single EWS indices? 

”, or (5) “How is EWS performance affected by external factors, such as life events or 

medication use? ”. The answers to these kinds of questions may be helpful to unravel if and 

how dynamical systems theory fulfils its promise for psychiatric research and implementation 

in clinical practice. 

In summary, we found that both EWS and spectral periodicity indices could facilitate 

the prediction of upcoming mood episodes in bipolar patients. With the tested EWS we were 

able to identify upcoming BD episode onsets. Yet, before this method can be used in clinical 

practice further studies are required to investigate how the tested EWS perform in the absence 

of transitions; thereby investigating their false positive rates. Contextdriven actigraphy based 

EWS such as autocorrelation at lag-720, require further conceptual study in order to leverage 

their predictive capabilities, especially regarding their timing, as currently only a period of 

four weeks was considered. Furthermore, we investigated whether disturbances in periodicity 

preceded episode onset. Such periodicity disturbances were found to show performance that 
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is more akin to general instability indices than as singular indices for episode onset. While 

such findings were unexpected, and might be less helpful from a clinical perspective (e.g., 

when the end instead of the start of the episode is predicted), they do offer useful theoretical 

knowledge to assess their effectiveness and limitations in EWS interpretation. The current 

study thus provides exploratory information on the opportunities and pitfalls of analyzing 

EWS from actigraphy data. As such, the pioneering work presented in this study can be used 

as a stepping-stone for future studies examining the possibility to predict mood transitions by 

using actigraphy data, both in patients suffering from bipolar disorders as well as in other 

mental disorders. 
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Abstract 

 

Antidepressant discontinuation increases the risk of experiencing depressive symptoms. In a 

repeated single-subject design, we tested if transitions in depression were preceded by 

increases in actigraphy-based critical slowing down based Early Warning Signals (CSD-

based EWS; variance, kurtosis, autocorrelation), circadian rhythm-based indicators, and 

decreases in mean activity levels.  

Four months of data from 16 individuals with a transition and 9 without a transition in 

depression were analyzed using a moving window method.  

As expected, more participants with a transition showed at least one EWS (50% true 

positives; 22.2% false positives). Surprisingly, increases in circadian rhythm variables and 

decreases in activity levels were more common in participants without a transition 

(respectively, 25.0% and 37.5% true positives; 44.4% and 44.4% false positives).  

None of the tested risk indicators could confidently predict upcoming transitions in 

depression, but some evidence was found that CSD-based EWS were more common in 

participants with a transition. 

 

Keywords 

actigraphy, antidepressant discontinuation, early warning signals, personalized psychiatry, 

repeated single-subject design   
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Introduction 

Major depressive disorder (MDD) is a severely debilitating condition affecting approximately 

264 million individuals worldwide (WHO, 2019). For this condition, the prescription of 

antidepressant medication is widespread and increasing in Europe and the United States 

(Gusmão et al., 2013; Pratt, Brody, & Gu, 2017). Discontinuation of antidepressant use is 

often desired by patients for different reasons but raises the risk of increases in depressive 

symptoms (Geddes et al., 2009; Glue et al., 2010; Sim et al., 2016). While there are a number 

of established risk factors from (group-based) epidemiological research for depression 

relapses and increases in depressive symptoms, such as comorbid psychopathology and 

negative cognitive styles (Burcusa & Iacono, 2007; Buckman et al., 2018), these effects 

might not always apply on an individual level (Molenaar, 2004; Hamaker, 2012; Zuidersma 

et al., 2020). As such, there seems to be a clear lack of individual-based research to reveal 

within-person risk quantifiers of increases in depressive symptoms following antidepressant 

discontinuation. Moreover, established risk factors do not yet convey much information about 

the timing of potential upcoming transitions in depressive symptoms in individual patients. 

This hinders clinical practice, wherein clinicians are yet unable to accurately monitor patient 

progress and potential risks of depressive symptoms returning during and shortly after 

medication discontinuation attempts.  

Complex dynamical systems theory could aid in such personalized transition detection 

based on an individual’s collected time-series data. This theory presumes a set of critical 

slowing down-based early warning signals (EWS) for a broad subset of dynamical systems, 

which can identify if a transition into another (mood) state is approaching in some dynamical 

systems (Scheffer et al., 2009). Near such a tipping point, we expect to find critical slowing 

down, wherein the return rate to equilibrium after minor disturbances goes to zero (Scheffer 

et al., 2009; Wissel 1984; Strogatz, 2018). EWS preceding critical transitions are assumed to 
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be present in various systems, from ecological systems wherein climate can change to global 

financial systems wherein markets can deteriorate and collapse (Scheffer et al., 2009). EWS 

are calculated as relatively straightforward statistical indices, such as variance, kurtosis, or 

autocorrelation at lag 1 (acf-1), which are expected to increase before the transition occurs 

and to peak somewhere around the transition moment (Scheffer et al., 2009; Biggs, Carpenter 

& Brock, 2009; Dakos et al., 2012a). These increases occur because when a system recovers 

more slowly from perturbations, its state spends more time away from the equilibrium. 

In psychiatry, several studies report evidence that EWS may precede transitions in 

depression (van de Leemput et al., 2014; Wichers & Groot, 2016; Wichers, Smit & Snippe, 

2020; Helmich et al., submitted). In these studies, EWS were examined in time-series data 

collected through the experience sampling method (ESM, also known as ecological 

momentary assessment (Csikszentmihalyi & Larson, 1987). Here, individuals fill out short 

questionnaires multiple times a day on mobile devices, such as smartphones. While ESM 

time-series data can offer insight into how momentary affect develops over time, it can be 

relatively limited in the number of daily assessments. This is mainly due to studies having to 

balance the number of presented questionnaires against the potential burden for individuals 

having to fill-out multiple questionnaires each day (van Genugten et al., 2020). This is why 

there is a need to investigate if EWS could be applied to certain types of time-series data, 

which are less burdensome to collect, such as actigraphy or accelerometer data (Kunkels et 

al., 2021). Moreover, by doing so, we could investigate whether the predictive capabilities of 

actigraphy-based EWS can improve over those of ESM-based EWS. Such actigraphy data on 

physical activity is anticipated to include relevant information for identifying transitions in 

depressive symptoms, as the normal physical activity pattern is expected to change when 

nearing such a transition. Actigraphy data are collected by having individuals continuously 

wear lightweight accelerometers, which can provide data in intervals from, for example, 60 
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second periods, down to 1 second periods. Intensive longitudinal data are assessed (e.g., 1440 

measurements a day when using 60 sec. periods) without individuals having to put in any 

conscious effort (Kunkels et al., 2021). 

Another advantage of using critical slowing down based EWS on actigraphy time-

series data is the established conceptual link between depressive symptoms and physical 

activity, as psychomotor retardation is a key feature of MDD (Buyukdura, McClintock & 

Croarkin, 2011). While ESM is also based on a conceptual link between ESM and 

depression, the link between physical activity and depression might have a different pathway 

and thus could provide new information. Slowing down in MDD patients can be observed in 

gross psychomotor movements, including diminished hand and leg movements (Sobin, 

Mayer & Endicott, 1998). Also, it was found that patients who clinically improved showed 

significantly higher movement intensities after four weeks, while patients who did not 

improve did not show increased movement intensities (Todder, Caliskan & Baune, 2009). As 

such, we expect to detect decreases in the mean level of physical activity, as measured by 

actigraphy, before an increase in depressive symptoms.  

When investigating actigraphy time-series data, the interdaily stability (IS) and 

intradaily variability (IV) are commonly used non-parametric methods. Both are well-

established circadian rhythm variables and provide information about the stability and 

fragmentation of the circadian rhythm (van Someren 1999; Witting et al., 1990). IS indicates 

the association between the circadian rhythm and external Zeitgebers (stability). That is, IS 

indicates how stable the circadian rhythm is from day to day, and the higher IS, the more 

stable the rhythm. IV marks the intensity and frequency of changes in rest and activity 

(fragmentation). IV thus indicates how much the circadian rhythm is fragmented within a 

day, wherein higher IV indicates a more fragmented and unstable circadian rhythm. Given 

their role in general actigraphy research, we hypothesize these quantifiers will also be highly 
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informative in our sample. In contrast with the critical slowing down-based EWS, quantifiers 

such as IS and IV can be considered circadian rhythm variables. Hence, preceding a 

transition towards increases in depressive symptoms, we would expect increased IS and 

decreased IV, as it could indicate rigidity changes in the system, causing the system to have 

problems coping with external stressors. We also propose a third circadian rhythm variable, 

acf-1440 (autocorrelation at lag-1440), a circadian variant of acf-1, which provides 

information about the autocorrelation of the actigraphy data over 1440 minutes (24 hours). As 

acf-1440 corresponds to roughly one circadian cycle, it is expected to carry information about 

the individual’s day-to-day activity levels and thus may be more informative than acf-1 in 

this case as it captures a longer and more circadian component of the time series than acf-1. 

This notion is further supported by earlier studies investigating alternative autocorrelation 

lags, such as acf-720 (Kunkels et al., 2021). We expect acf-1440 to show an increase near 

transitions, as measurements were taken 24-h apart are expected to become more alike.  

While there are a number of studies that investigated depression using actigraphy 

(Todder, Caliskan & Baune, 2009; Lemke, Puhl & Broderick, 1999; Minaeva et al., 2020; 

Raoux et al., 1994; Difrancesco et al., 2019), most only used relatively short assessment 

periods of a number of days up to a few weeks. Such short-term periods are too short to fully 

capture the (gradual) discontinuation of antidepressant (tapering) periods, involving several 

weeks or sometimes even months. Most notably, none of the actigraphy studies in MDD 

patients focused on within-person changes in context-driven actigraphy-based indicators for 

upcoming increases in depressive symptoms following antidepressant discontinuation. To 

investigate potential quantifiers of upcoming transitions in MDD, a study design is required, 

which allows us to investigate per participant whether changes in EWS preceded upcoming 

transitions.   
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Therefore, in 25 single-subject time series, all obtained within the same TRANS-ID 

study (for the complete study protocol, see: https://osf.io/zbwkp), we will investigate whether 

EWS and context-driven risk quantifiers calculated over actigraphy data precede increases in 

depressive symptoms in individuals in remission who were discontinuing their antidepressant 

medication. We expect to detect in each of the single subject time-series that prior to 

transitions in depressive symptoms: (1) increasing critical slowing down based EWS 

(variance, kurtosis, and acf-1), (2) increasing IS and acf-1440, and decreasing IV, and (3) 

decreasing mean levels of physical activity. In Table 1, an overview of critical slowing down-

based EWS (variance, kurtosis, acf-1), circadian rhythm variables (IS, IV, acf-1440) and 

mean level, and expected direction of effect are given. The reported variables will be studied 

at the individual level, which allows for examining of individual differences as well as 

whether the presence of EWS can be replicated across individuals. The analysis of this study, 

including its hypotheses, was pre-registered on the Open Science Framework (see: 

https://osf.io/dfmw3) and the complete study protocol is available online 

(https://osf.io/zbwkp). 
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Table 1 

Overview of quantifiers and expected direction of change to identify an upcoming transition 

in depressive symptoms. 

Note: H1, hypothesis 1; H2, hypothesis 2, H3, hypothesis 3; acf-, autocorrelation at lag-. 

* While the cited references offer the theoretical basis for IS and IV, the expected directions
of these quantifiers in this study were introduced in the current study.

** Autocorrelation at lag-1440 was introduced in the current study as a circadian (24 hours) 
variant of autocorrelation at lag-1.  

Quantifiers Transition  No transition Reference 

H1: Variance Increase No significant 

change 

Scheffer et al., 2009; Biggs, Carpenter & 

Brock, 2009; Dakos et al., 2012a 

H1: Kurtosis Increase No significant 

change 

Scheffer et al., 2009; Biggs, Carpenter & 

Brock, 2009; Dakos et al., 2012a

H1: acf-1 Increase No significant 

change 

Scheffer et al., 2009; Biggs, Carpenter & 

Brock, 2009; Dakos et al., 2012a

H2: IS Increase No significant 

change 

van Someren 1999; Witting et al., 1990* 

H2: IV Decrease No significant 

change 

van Someren 1999; Witting et al., 1990*

H2: acf-1440 Increase No significant 

change 

None** 

H3: Mean activity Decrease No significant 

change 

Buyukdura, McClintock & Croarkin, 2011; 

Sobin, Mayer & Endicott, 1998;  Todder, 

Caliskan & Baune, 2009 
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Methods 
Sample: An overview of individual inclusion and exclusion is shown in Figure 1. Individuals 

were recruited through a pharmacy and online means. In total, 69 individuals were included 

in the study who fulfilled the criteria of a past diagnosis of major depressive disorder (MDD) 

according to DSM-IV criteria. These formerly depressed individuals made a shared decision 

with their mental health professional to taper their antidepressant medication and did not 

meet the criteria for MDD at baseline. Of these individuals, 13 dropped out, and for five 

individuals, it was not possible to clearly define whether a transition towards higher levels of 

depression had occurred and were thus excluded. One participant was excluded due to 

technical issues causing actigraphy data loss. Of the remaining 50 individuals, 31 did 

experience a transition in depressive symptoms, while 19 did not. Of those with a transition, 

we excluded: two individuals due to incomplete actigraphy data files, three individuals 

because their actigraphy time-series data had more than seven consecutive days of missing 

data, five individuals because the transition occurred before or after the measurement period, 

and five individuals because there were less than 30 days of data before the transition, which 

would be not enough data to properly conduct the analyses. This period was doubled when 

compared to the 14 days first described in our pre-registration as we have also doubled the 

window size from 7 to 14 days for our analyses. This increase is expected to maintain reliable 

calculation of the quantifiers, while also maintaining the weekly periodicity of actigraphy 

data. As such, the final sample included 16 individuals with a transition. Regarding the 19 

individuals without a transition, one had to be excluded due to incomplete actigraphy data 

files, while nine had to be excluded because there were more than seven consecutive days of 

actigraphy data missing. The final sample included nine individuals without a transition. As 

such, the available final sample differed in size from that reported in the pre-registration (see: 

https://osf.io/dfmw3). Further details on the used study protocol are available online (see: 

https://osf.io/zbwkp/). The study was approved by the Medical Ethical Committee of the 
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University Medical Center Groningen (UMCG, METc2016.443). All patients were informed 

that they could stop their participation at any time and were asked to read and provide written 

informed consent prior to participation.  

Figure 1: Flowchart TRANS-ID Antidepressant discontinuation and Actigraphy study 
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Actigraphy assessment: Physical activity time-series data were collected with a wrist-worn 

MotionWatch 8 (MW8, CamNTech) accelerometer. The MW8 was initialized to assess 60 

seconds epoch lengths, while light detection and data compression were disabled. Individuals 

were instructed to continuously wear the MW8, only removing the device under rare 

conditions, such as sauna visits. Moreover, individuals were instructed to press the MW8 

event marker button to register the times at which the individual got out of bed and when the 

individual went to sleep. As battery and memory capacity was valid for data assessment for 

two months, MW8 actigraphs were replaced halfway through the four-month monitoring 

period. Participants received the first MW8 during a personal interview at the start of the 

monitoring period and the replacement MW8 through registered mail. These MW8 devices 

were initialized before sending them through postal services, and participants only had to 

switch the old MW8 for the new MW8 while returning the old MW8 via postal services.  

Actigraphy data pre-processing: Activity count data from the MW8 accelerometers were 

extracted with the native Motionware software (version 1.2.28). Due to replacing the MW8 

devices halfway through monitoring, the two actigraphy files assessed from each participant 

were merged prior to analyses. Although the native Motionware software offers the merging 

functionality, such straightforward merging led to the mismatched merging of files in the 

current application. Hence, three raters were employed to systematically merge these files. 

Files were visually checked on their activity and sleep patterns to provide optimal matches of 

files on the minute level. Missing data between files were imputed with zeroes to merge the 

two files into one continuous file, as subsequent analysis software could not handle missing 

data. The imputation of data was only done on small-scale instances when it was required to 

merge multiple data files from one participant. In Table 2, a column is added to show the 

information on how much data was missing at maximum in relation to the size of the moving 
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window. From these percentages, we infer that it is unlikely that the applied imputation 

strategies could have substantially tainted the analysis outcomes. 

Transitions in depression: Transitions towards higher levels of depressive symptoms were 

defined using weekly SCL-90 depressive symptom data, the evaluation interview, and other 

qualitative data (Smit et al., In Press). Patients had to fulfill a criterion of a reliable change 

(Jacobson & Truax, 1991) in depressive symptoms on the SCL-90 depression subscale, a 

criterion on the persistence of this depressive symptom increase, and a criterion on the 

clinically meaningful change as experienced by patients (qualitative consensus rating based 

on interviews and open-ended questions).  

Actigraphy outcome variables: From the actigraphy data, the following outcome variables 

were calculated: (1) EWS (variance, kurtosis, and acf-1), (2) circadian rhythm variables (IS, 

IV, and acf-1440), and (3) mean physical activity. Comprehensive overviews of IS and IV 

calculation are described in more detail elsewhere (van Someren 1999; Witting et al., 1990). 

Missing data were handled by the following exclusion criteria. That is when more data were 

missing than the moving window analyses could process (e.g., when complete files were 

missing) or when more than seven consecutive days were missing (details given in Figure 1). 

Statistical analyses: To detect significant changes in the EWS, modified Mann-Kendall (MK) 

tests (Hamed & Ramachandra Rao, 1998) were used as this method is better suited to deal 

with autocorrelation between consecutive windows than the normal MK-test and is, therefore, 

less vulnerable to false positives. The Mann-Kendall trend test is a commonly used test in the 

literature on EWS (Dakos et al., 2012b). An advantage of the Mann-Kendall trend test is that 

it is better suited to detect nonlinear monotonic trends than a Pearson correlation. 

Additionally, the Kendall correlation coefficient requires much fewer points than Pearson or 

Spearman correlation coefficients for detecting the same trend in data (Bonett & Wright, 
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2000). As we expected some of the indicators to overlap, we employed the effective number 

of tests (Meff) method (Cheverud, 2001) to correct for multiple testing, which takes into 

account the cross-correlations between quantifiers, considering individual participants. For 

individuals with a transition, only data obtained before the transition were analyzed; for 

individuals without a transition, the full research period was analyzed. 

Traditionally, a statistical test with a p-value as an outcome parameter is used to detect a 

change in an EWS, and this significant change (p<pα) is expected to predict, or detect, a 

transition. We used the Meff method to adjust the standard pα of 0.05 to a lower lever 

(approximately 0.02) to correct for multiple testing and correlations between EWS. We used 

a single-sided test (change in the pre-defined direction, Table 1, pα applied to the upper side 

of the probability distribution only).  

Calculating EWS: The ACTman software package (Kunkels et al., 2019, see; 

https://github.com/compsy/ACTman/) for R statistical software, version 4.0.4 (R Core Team, 

2019) was used to preprocess the actigraphy data. The employed moving window method 

spanned 14 days and was moved over the actigraphy data in one-day steps. In the pre-

registration, a window size of seven days was described. However, such short window sizes 

might lead to more variable estimates which could also provide more unreliable EWS and 

risk indicator estimations. In order to investigate whether there are substantial differences in 

study outcomes when choosing between a 14-day moving window and a 7-day moving 

window, we did also perform the analyses in a 7-day moving window, the results of which 

are available in the supplementary materials, Table S6. No substantial difference was found 

herein.  
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Results  
Descriptives 

Of the sixteen participants who did experience a transition, the mean age was 51.3 years old 

(range: 27 – 67), and 87.5% were female. Of the nine participants who did not experience a 

transition, the mean age was 44.8 (range: 25 – 61), and 77.8% were female. 

Critical slowing down-based EWS 

The results on the critical slowing down-based EWS quantifiers are given in Table 2. 

Significant increases in variance preceded transitions in three individuals (18.8% true 

positives; 11.1% false positives). Significant increases in kurtosis preceded transitions in four 

individuals (25.0% true positives; 11.1% false positives). Significant increases in acf-1 

preceded transitions in three individuals (18.8% true positives; 11.1% false positives), one of 

whom also showed an increase in variance. As such, in eight out of sixteen individuals 

(50.0%) with a transition, at least one critical slowing down-based EWS preceded the 

transition (i.e., true positives). Regarding the nine individuals who did not experience a 

transition, two out of nine individuals (22.2%) falsely showed significant increases in at least 

one EWS (i.e., false positives). Here, kurtosis and acf-1 both showed a false positive in the 

same individual, while variance showed a false positive in one other individual.  
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Table 2 

Performance of EWS, calculated over participants’ actigraphy data, in identifying upcoming 

transitions in depressive symptoms.  

Critical 

slowing 

down 

based  EWS Context EWS Mean 

Max %  

imputed 

of moving  

window 

Transition group (N= 16) 

ID  

Varianc

e Kurtosis acf-1 IS IV 

acf-

144

0 Mean TOTAL 

1036 1 0 1 0 0 0 0 2 5.22% 

1045 0 0 0 0 0 0 0 0 0.00% 

1046 1 0 0 1 0 0 0 2 0.00% 

1052 0 1 0 0 0 0 0 1 0.00% 

1074 0 0 0 0 0 0 1 1 0.00% 

1075 0 1 0 0 0 0 0 1 0.00% 

1076 0 0 0 0 0 0 0 0 0.00% 

1077 0 0 1 0 0 0 0 1 0.00% 

1108 0 1 0 0 0 0 1 1 0.00% 

1133 0 0 0 0 0 1 0 1 72.17% 

1173 0 0 1 0 0 0 1 2 0.00% 

1181 0 0 0 0 0 0 1 1 0.00% 

1193 0 0 0 0 1 0 0 1 10.62% 
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1224 1 1 0 0 0 0 0 2 0.00% 

1264 0 0 0 0 1 0 1 1 0.00% 

1293 0 0 0 0 0 0 1 1 0.00% 

TOTAL 3 4 3 1 2 1 6 

Percentag

e: 18.75% 25.00% 

18.75

% 6.25% 12.50% 

6.25

% 37.50% 87.50% 

Non-Transition group (N = 9) 

1041 0 0 0 0 0 0 1 1 24.22% 

1059 0 0 0 0 0 0 0 0 0.00% 

1067 0 0 0 0 0 1 1 2 0.00% 

1110 0 1 1 0 0 0 1 3 0.00% 

1178 1 0 0 0 1 0 0 2 0.00% 

1180 0 0 0 0 1 0 0 1 0.00% 

1255 0 0 0 1 0 0 1 2 3.27% 

1280 0 0 0 0 0 0 0 0 0.00% 

1295 0 0 0 0 0 0 0 0 32.84% 

TOTAL 1 1 1 1 2 1 4 

Percentag

e: 11.11% 11.11% 

11.11

% 

11.11

% 22.22% 

11.1

1% 44.44% 66.7% 

Note: The upper panel shows the transition group wherein green cells indicate the true 

positives. The lower panel shows the non-transition group wherein red cells indicate the false 

positives. Yellow cells indicate zeroes. acf-1, autocorrelation at-lag-1; acf-1440, 

autocorrelation at-lag-1440; IS, interdaily stability; IV, intradaily variability. *These two 

percentages are calculated by counting how many participants in each group had at least one 

significant EWS, and dividing it by total group size. 
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Circadian rhythm variables 

Results in the circadian rhythm variables are given in Table 2. Significant increases in IS 

were found to precede a transition in one individual. (6.3% true positives; 11.1% false 

positives). Significant increases in IV were found to precede a transition in two other 

individuals. (12.5% true positives; 22.2% false positives). Significant increases in Acf-1440 

were found to precede a transition in another individual. (6.3% true positives; 11.1% false 

positives). In sixteen individuals with a transition, four participants showed increases in 

circadian rhythm variables in the period prior to the transition (25.0%). Regarding the nine 

individuals who did not experience a transition, four out of nine individuals (44.4%) 

incorrectly showed significant increases in at least one EWS (i.e., false positives, indicating 

that false positives were more common, among the investigated circadian rhythm variables 

than true positives).  

Mean levels 

When investigating whether decreases in the mean levels of physical activity precede 

transitions in depression, we did find six such decreases in the sixteen individuals (37.5%) 

with a transition (true positives, see Table 2). However, we also found four decreases in mean 

activity in the nine individuals (44.4%) without a transition (false positives). This indicates 

that false positives were more common, among the investigated mean levels than true 

positives. 
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Post-hoc analyses  

In our preregistered analysis plan, we described tests on the expected direction of effects. 

However, as we observed during analysis that many EWS showed substantial changes in the 

unexpected direction, and we decided to also perform post-hoc analyses using two-sided 

tests. In other words, it seemed that the performance of some EWS may be improved by 

excluding the predicted direction of the effect, albeit at a higher false positive rate. ROC 

curves were calculated post-hoc and plotted to investigate the true positive rate and false 

positive rate characteristics of the EWS and circadian rhythm variables. ROC curves show 

the true positive rate (sensitivity) against the false positive rate (Egan, 1975; Fawcett, 2006). 

A description of the ROC curves is given in S1, the ROC curves are shown in Figure S2, and 

the results are given in Table S3. Here, one can observe that the two-sided tests mostly 

outperformed the one-sided tests. Regarding individual EWS, the two-sided plot for kurtosis 

and IV runs close to the top-left corner. This can be interpreted as that these EWS performed 

relatively well in preceding transitions while not suffering as much from giving false 

positives. A description hereof is given in S4, and the corresponding results are given in 

Table S5. Here, the number of true positives for the 2-sides test was that 15 out of 16 unique 

transitions were preceded by a significant change in at least one EWS (93.75%; instead of 14 

out of 16 (87.5%) described for the 1-sided tests above). Unfortunately, the false positive rate 

also increased substantially when testing two-sided. Instead of 66.7% of false positives in the 

one-sided test, the false positive rate increased to 100% when testing two-sided. Additionally, 

we exploratively combined multiple risk quantifiers into aggregate measures that increased 

the accuracy of the method for predicting the same data used to fit the model (see S7 and S8). 

Here we found that combinations of EWS were able to outperform single EWS under specific 

circumstances, however further studies are needed to confirm such findings in larger samples. 
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Discussion 
A repeated single-subject design was used to test if circadian rhythm variables could 

predict an increase of depressive symptoms to a clinically relevant level in individuals who 

discontinued their antidepressant medication. At the individual level, we found that in eight 

out of sixteen participants (50.0% true positives), an upcoming transition in depressive 

symptoms was preceded by at least one CSD-based EWS (variance, kurtosis, and acf-1), 

compared to 22.2% false positives in participants without a transition, which was in line with 

our first hypothesis. However, the performance of individual critical slowing down-based 

EWS was lower, ranging from 18.7% to 25.0% true positive rates versus an 11.1% false 

positive rate. We also found that the circadian rhythm variables (IS, IV, and acf-1440) did not 

signal upcoming transitions, as false positives were more common than true positives. 

Regarding mean activity levels, we also found that false positives were more common than 

true positives. Therefore, we conclude that no evidence was found for our second and third 

hypotheses. In the current study, we did not investigate the potential effects of life events on 

mean activity levels and circadian rhythm. However, as such events may provide an 

alternative explanation for some of the detected changes, we suggest future studies to 

investigate this in more detail. From these results, we found some support for the first 

hypothesis that increases in at least one critical slowing down-based EWS (variance, kurtosis, 

and acf-1) precedes transitions in depressive symptoms. With respect to this finding, we can 

conclude that increases in at least one critical slowing down-based EWS were found to be 

more prevalent in participants who experienced a transition than in participants who did not 

experience such a transition. As such, single EWS does not yet seem to be able to 

differentiate between participants with and without transitions. No evidence was found for 

the second hypothesis that circadian rhythm variables precede transitions. Furthermore, no 

strong support was found for the third hypothesis.  
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Earlier research examined whether circadian rhythm variables could differentiate 

healthy individuals from depressed individuals or whether depressive episodes or the timing 

of the episodes could be detected based on actigraphy-based measures (Minaeva et al., 2020; 

Zanella-Calzada et al., 2019). One of the unique features of the current study is that we 

examined if within-person changes in these actigraphy-derived quantifiers occurred just 

before individuals transitioned towards higher levels of depressive symptoms. Whereas 

previous studies have shown a number of circadian rhythm variables to be associated with 

depressed mood states (Esaki et al., 2021), the current study shows that the investigated 

circadian rhythm variables (IS, IV, and acf-1440) do not function as early indicators of an 

upcoming recurrence of depression.  

When considering what the best predictor was for transitions in depressive symptoms, 

our post-hoc investigations into combinations of EWS provide some information. That is, our 

analyses yielded evidence that combining multiple EWS may improve the prediction of 

transitions, for example, the combination of acf-1440, acf-1, and kurtosis, whose point was 

found to be on the line of optimal solutions for equal costs for true and false positives. Due to 

the limited sample size, no cross-validation was possible, and thus, we cannot rule out this 

finding as a chance finding. However, these exploratory results may be a stepping stone for 

future research into EWS combinations on actigraphy time-series data from a larger sample. 

Using that data to find EWS combinations would then be validated through cross-validation. 

Only after that studies with a more confirmatory character can be used to investigate these 

EWS combinations for predictions of transitions in depression. 

Given advances in actigraph technology above ESM and the current availability of 

cloud data storage and analysis, as signaled by mainstream adaptation of commercial 

actigraphs such as Fitbit, future research could consider developing a software tool for 

automatically calculating actigraphy-derived transition quantifiers that can be presented to 
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end-users (patients or clinicians) in an intuitive way. Such a tool may have the potential to 

more adequately estimate upcoming transitions than tools used currently. However, whether 

such future actigraphy quantifiers should be based on critical slowing down, context-driven, 

circadian, or alternative theories or measures is still very much open to debate. Moreover, as 

we will discuss in the next paragraph, there are several methodological challenges that need 

attention as well.  

Given the mixed findings at the individual level, we post-hoc investigated the effects 

of the a priori formulated expected direction of the EWS post-hoc (see S4 and S5). In general, 

testing two-sided instead of one-sided did increase the true positive rate somewhat, but it 

increased the false positive rate equally or even more. It is interesting to note that in acf-1440, 

the true positive rate increased substantially more than the false positive rate, which may 

indicate that our initial hypothesis that acf-1440 would become more rigid and therefore 

decrease over time may have been wrong. Future studies investigating whether the expected 

directions of CSD-based EWS and circadian rhythm variables hold robustly in actigraphy 

data could be worthwhile, especially for acf-1440. Additionally, such research could also 

investigate whether, instead of becoming more rigid, the system might become more irregular 

instead (Servaas et al., 2021). 

While the used TRANS-ID dataset offers a unique and rich high-resolution 

longitudinal dataset with multiple datatypes, the current study found that trying to predict 

transitions through the investigated actigraphy-based quantifiers on a more idiographic, 

individual-centered basis is not feasible. Perhaps firstly, the identification of more 

homogeneous activity subgroups is required, along with the study of the ranges and possible 

cut-off values for proposed transition quantifiers. While such studies would require sample 

sizes that are too large to easily study in academic settings due to financial and other 

constraints, commercial parties, such as Fitbit, Garmin, Apple, or Huawei, do process such 
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large quantities of (near) real-time data. Hence, perhaps future studies could aim at improving 

industry-academia cooperation in developing potential transition detection and prediction 

measures and methods.  

This study had a number of limitations that should be taken into account. First, the 

study was designed for repeated single-subject analyses meaning that power calculations 

were based on the number of data points within one participant needed for statistical analyses 

instead of the number of participants in a group. This meant that the results were descriptive, 

and differences in EWS between participants with and without a transition could not be tested 

statistically. Therefore, the results from the between-person analyses should be interpreted 

carefully, and confirmation using a larger sample is needed. Second, the core analyses in this 

paper were applied after data collection was completed. The retrospective EWS analysis 

strategy involved that we first had to determine the transitions and subsequently could test if 

EWS could predict these transitions. To become clinically relevant, this should be the other 

way around to be able to provide ample warning time before a transition occurs. Real-time 

methods such as statistical process control (SPC) have recently been proposed (Smit et al., 

2022), tested in simulated ESM data (Schat et al., 2021), and shown to have value in 

foreseeing recurrence of depression using empirical ESM time-series data (Smit, Snippe, 

Wichers, 2019; Smit & Snippe, 2022, Snippe, et al., under review). When considering to 

apply EWS in real-time, researchers will have to be aware to select methods that are able to 

correct for repeated testing. While real-time methods such as SPC can handle this issue 

(Montgomery, 2012), it still has to be investigated what the effects hereof are on the false 

positive rates in this context. Third, of the 51 participants who completed the data collection 

period and had transition data available, we were only able to include 25 participants in our 

analyses. One of the main reasons for this was that the actual battery life of the used 

actigraphs was only half of the expected battery life, necessitating the use of two actigraphs 
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to cover the full data collection period of four months. As the used actigraphs could only be 

initiated by research staff, due to the required software not being available for participants, 

actigraph delivery through regular mail services was required. This caused missing data and 

required an additional merging step to merge each participant’s data files after receiving the 

actigraphs back from the participants. The exclusion of half of the participants from the 

analyses due to data loss illustrates that there is still considerable room for improvement. 

Based on our experiences during this study, we would suggest working with devices with 

larger battery capacity or devices of which participants can change the battery themselves, 

and which also allow for real-time streaming of actigraphy data to certified protected servers. 

Notably, the latter suggestion is also conditional for any future development of real-time 

EWS calculation and immediate informing of the patient and their clinician.  

Additionally, it could be worthwhile to investigate a sample of participants whose 

transition occurred in the opposite direction, that is, towards a state of decreased depressive 

symptoms. This process is likely to be seen in individuals treated for their depressive 

symptoms, as was done in the TRANS-ID Recovery study (Helmich et al., 2020). Repeating 

the analyses of the current study with data from the Recovery study may expand our 

knowledge of depressive symptom dynamics. Lastly, in this study demographics such as 

racial/ethnic identification, cultural/geographic background, or socio-economic status were 

not recorded as they were not expected to affect the investigated hypotheses. 

To conclude, this is the first study in which we investigated whether transitions into 

increased depressive symptoms during tapering of antidepressant medication were preceded 

by actigraphy-based EWS. Though results were in line with the idea that EWS may precede 

transitions towards higher levels of depression in a small subset of participants, no evidence 

was found that changes in circadian rhythm variables or changes in the mean level of 

actigraphy preceded such transitions. Though actigraphy can be a relatively practical way to 
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obtain physical activity time-series data in clinical practice, due to the small difference 

between participants with and without a transition, clinical implementation of actigraphy-

based EWS as a monitoring tool to inform individuals about their momentary risks of 

recurrence does not seem feasible in the near future.  

 

Data availability 

The data are not freely available in a public repository due to restrictions related to data 

containing information that could compromise the privacy of the participants. However, data 

are available upon request via the TRANS-ID Data Access Committee (info@transid.nl or 

h.riese@umcg.nl). 
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S1 ROC Curves 

Receiver Operating Characteristics (ROC)-curves: In the calculated ROC-curves, the p-

values of the modified MK-tests were used as scoring classifier to construct the ROC-curves. 

This was done to explore at what cut-off score of the p-values the quantifiers would have the 

best trade-off between false positive rate and true positive rate. Hence, when we choose a 

higher cut-off p-value of the MK-test(meaning that there can be a non-significant change in 

the EWS, if the cut-off value is above the critical value of the Meff-method), the test becomes 

more sensitive, at the cost of higher false positive rate (right side of the curve). When we 

choose a lower cut-off p-value, the test becomes more specific, at the cost of a lower true 

positive rate (left side of the curve). The false positive rate can be interpreted as the 

probability of false alarm of transition. In ROC-curves, the top-left corner denotes the “ideal 

classifier”; ROC-curves running close to the top-left corner can be interpreted as showing 

good to excellent performance. However, a curve running exactly along the diagonal line 

from the bottom left to top-right indicates that there is no predictive value at all. Additionally, 

the AUC (area under the curve) values were calculated which indicate how well the classifier 

we constructed performs. The AUC value ranges from 0 to 1 (Mandrekar, 2010), a value of 1 

denotes a perfect accurate test, and a value of 0.5 denotes making decisions randomly. Below 

0.5, reversing all decisions would improve the test result. Typically AUC values between 0.7 

and 0.8 are considered to be acceptable, AUC values between 0.8 to 0.9 are considered 

excellent, while AUC values above 0.9 are considered to be outstanding (Hosmer & 

Lemeshow, 2000)48. ROC-curves were created in SPSS and p-values < 0.05 were considered 

statistically significant for testing the AUC’s. 

We used the p-value without the constrained of ‘significance’. We used it as a scoring 

classifier for detecting a transition for pα ranging from 0.0 to 1.0 and to construct the ROC-

curve for an EWS. The performance of each EWS can be compared using the area under the 

ROC-curve. To implement a detection method for transition, a specific pα has to be selected, 

corresponding with an acceptable false positive rate and/or true positive rate. We will not do 

this, since it depends highly on the costs of true and false positives, which are dependent on 

health care system and the preferences of the participants clinician. 

For the EWS, both the one- and two-sided test, the ROC-curves are shown in Figure S2 and 

corresponding AUC-values are given in Table S3. From the ROC-curves, one can observe 

that the two-sided tests outperformed the one-sided tests, with a notable exception for IS. 
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Regarding individual EWS, the two-sided plot for kurtosis and IV run close to the top-left 

corner. This can be interpreted as that these EWS performed relatively well in preceding 

transitions while not suffering as much from giving false positives. Regarding the two-sided 

tests, the AUC-values of the autocorrelations at lag-1 (AUC = 0.708) and at lag-1440 (AUC = 

0.736) are acceptable. The AUC-values for variance (AUC = 0.500) and kurtosis (AUC = 

0.556) denote sub-par performance. AUC-values for IS was lower than 0.5 (AUC = 0.389), 

meaning that reversing all decisions based on IS improves the test result.  

Post-hoc analyses on potential EWS combinations: Given that there is not much overlap 

between EWS results, we post-hoc explored combining them. We combined the results of the 

EWS to detect a transition in a logic OR function, and plotted the performance in a graph 

with true positive rate as function of false positive rate. We use a binary logistic regression 

analysis to combine all EWS together to detect transitions. In this analysis, the p-values of the 

different EWS are weighted to create a new scoring classifier. The result is plotted in the 

same graph. For example, while variance, kurtosis, and acf-1 all precede only three to four 

transitions each for different individuals, this small overlap was improved in a combination of 

EWS to precede transitions in eight out of sixteen individuals (50.0% true positives), while 

identifying false positives in two out of nine participants (22.2% false positives). Adding the 

mean to such an EWS combination would allow it to correctly classify transitions in twelve 

out of sixteen individuals (75.0% true positives), with a false positive rate of 55.6%. More 

detailed results and information regarding EWS combinations are given in the supplementary 

materials S7 and S8.  

Next, to investigate the unique contribution of each EWS after adjusting for the others (and 

thus giving appropriate weight to each EWS in this way) binary logistic regressions were 

used to assess the association between EWS quantifiers and the binary outcome whether a 

transition was present or not. Results showed that the influence of ill-performing EWS was 

minimised, while those of well-performing EWS increased. Binary logistic regression can 

provide us with EWS combinations which should outperform EWS combinations which are 

designed manually. It is important to note that these results are explorative, and may overfit 

the current data due to the limited sample size. Hence, the same combinations of EWS can 

show differing results in a new sample. More detailed results and information regarding EWS 

combinations are given in the supplementary materials S7 and S8.  
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S2 Figure of ROC Curves 

Figure S2: ROC-curves of respectively (from top to bottom and from left to right) variance 

(AUC = 0.500 p = 0.43), kurtosis (AUC = 0.556, p = 0.65), autocorrelation at lag-1 (acf-1; 
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AUC = 0.708, p = 0.089), Interdaily stability (IS; AUC = 0.389, p = 0.365), Intradaily 

Variability (IV; AUC = 0.632, p = 0.282), and autocorrelation at lag-1440 (acf-1440; AUC 

= 0.736, p = 0.054). ROC= receiver operator curve, AUC-area under the curve. 

S3 Table of AUC values 

One-sided tested quantifiers (starting with “P1S_”) and two-sided tested quantifiers (starting 

with “p2S_”) showing area under the curve (AUC) values.  

Area Under the Curve 

Asymptotic 95% 

Confidence Interval 

Test Result Variable(s) Area Std. Errora Asymptotic 

Sig.b 

Lower 

bound 

Upper 

bound 

p1S_Autocorr_lag1 0.444 0.115 0.651 0.219 0.670 

p1S_Autocorr_lag1440 0.271 0.102 0.062 0.071 0.471 

p1S _IS 0.597 0.130 0.428 0.343 0.851 

p1S _IV 0.431 0.123 0.571 0.189 0.673 

p1S _Kurtosis 0.514 0.123 0.910 0.273 0.753 

p1S _Variance 0.500 0.129 1.000 0.247 0.753 

P1S_Mean  0.493 0.126 0.955 0.247 0.740 

p2S_Autocorr_lag1 0.708 0.105 0.089 0.502 0.915 

p2S_Autocorr_lag1440 0.736 0.102 0.054 0.536 0.937 

p2S_IS 0.389 0.137 0.365 0.121 0.657 

p2S_IV 0.632 0.142 0.282 0.353 0.911 

p2S _Kurtosis 0.556 0.130 0.651 0.301 0.810 

p2S _Variance 0.500 0.133 1.000 0.240 0.760 
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p2S_Mean 0.514 0.136 0.910 0.247 0.781 

a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5



92 

S4 Two-sided tests 

Two-sided tests 

The number of true positives for the 2-sides test was that 15 out of 16 unique transitions were 

preceded correctly by a significant change in at least one EWS (93.75%; instead of 14 out of 

16 (87.5%) described for the 1-sided tests above).  

Unfortunately, the false positive rate also increased when testing two-sided. Instead of 66.7% 

of false positives in the one-sided test, the false positive rate increased to 100% when testing 

two-sided. This meant that the increase in false positive rate was much larger than the 

increase in true positive rate, and testing two-sided was strongly detrimental to the accuracy 

of this method. Only in the variable acf-1440, did the true positive rate increase substantially 

more than the false positive rate, as the true positive rate increased by 31.3% compared to a 

11.1% increase in false positive rate. However, this result should be interpreted with caution, 

as it was a single result from multiple post-hoc tests, and the significance of this difference 

could not be tested due to the limited sample size.  
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S5 Table of two-sided EWS 

Two-sided performance of EWS, calculated over participants’ actigraphy data, in identifying 

upcoming transitions in depressive symptoms. The upper panel shows the transition group 

wherein green cells indicate the true positives. The lower panel shows the non-transition 

group wherein red cells indicate the false positives. In both panels the yellow cells indicate 

zeroes (no results).  

Critical 

slowing 

down 

based  EWS Context EWS Mean 

Transition group (N= 16) 

ID  Variance Kurtosis acf-1 IS IV 

acf-

1440 Mean TOTAL 

1036 1 0 1 0 0 0 0 2 

1045 0 0 0 0 0 0 0 0 

1046 1 1 0 1 0 0 0 3 

1052 0 1 1 0 0 1 0 3 

1074 1 0 0 0 0 1 1 3 

1075 0 1 0 0 0 0 1 2 

1076 0 1 0 0 0 0 0 1 

1077 0 0 1 0 0 0 0 1 

1108 0 1 0 0 0 1 0 2 

1133 0 0 0 0 0 1 0 1 

1173 1 0 1 0 0 1 1 4 

1181 0 0 0 1 1 0 1 3 

1193 1 0 0 0 1 0 0 2 
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1224 1 0 0 0 0 0 1 2 

1264 1 0 1 0 0 1 0 3 

1293 0 0 0 0 0 0 1 1 

TOTAL 7 5 5 2 2 6 6 

Percentage: 43.75% 31.25% 31.25% 12.50% 12.50% 37.50% 37.50% 93.75% 

Non-Transition group (N = 9) 

1041 1 0 0 1 1 0 1 4 

1059 0 0 0 1 0 0 0 1 

1067 0 0 0 0 0 1 0 1 

1110 1 1 1 0 0 0 1 4 

1178 1 0 0 0 1 0 1 3 

1180 0 0 0 0 1 0 0 1 

1255 0 0 0 0 0 1 0 1 

1280 0 1 0 0 0 0 0 1 

1295 0 0 0 1 0 0 0 1 

TOTAL 3 2 1 3 3 2 3 

Percentage: 33.33% 22.22% 11.11% 33.33% 33.33% 22.22% 33.33% 100.0% 
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S6 Table of frequencies given a 7-day window  

Frequency of significant increases in the period preceding a transition in depressive 

symptoms in individuals experiencing a transition and in individuals who did not have a 

transition into more severe depressive symptoms. Moving window size was set at 7 days, 

instead of 14 days in the analyses in the main part of the manuscript. 

acf-1 acf-1440 IS IV Kurtosis Variance Total 

Transition 

group 

2 3 2 2 2 3 14 

No transition 

group 

0 1 4 0 0 2 7 

Note: acf-1, autocorrelation at-lag-1; acf-1440, autocorrelation at-lag-1440; IS, interdaily 

stability; IV, intradaily variability.
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S7 Figure of true positive rate and 1-False positive rate-curve - two-sided 

Introduction, method, and discussion 

We combined the results of the EWS to detect a transition in a logic OR function, and plotted 

the performance in a graph with true positive rate as function of false positive rate. We use a 

binary logistic regression analysis to combine all EWS together to detect transitions. In this 

analysis, the p-values of the different EWS are weighted to create a new scoring classifier. 

The result is plotted in the same graph. In S7 and S8 we thus combine multiple risk 

quantifiers into an aggregate measure that increased the accuracy of the method. Binary 

logistic regressions were used herein to assess the association between EWS quantifiers and 

the binary outcome whether a transition was present or not. Results showed that the influence 

of ill-performing EWS was minimised, while those of well-performing EWS increased. 

Binary logistic regression can provide us with EWS combinations which should outperform 

EWS combinations which are designed manually. However, the current dataset was too small 

to apply cross-validation, meaning that the results likely overfit the current sample and it is 

thus yet unclear whether the same aggregate measures would also perform similarly in new 

samples. Therefore, larger studies are required to test the true potential of aggregate risk 

quantifiers.
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Performance of the EWS and combinations using the two-sided tests. Gray triangles represent 

the individual EWS, whilst the black dots represent the cumulative total. The triangles 

correspond respectively to: A = variance, B = kurtosis, C = acf-1, D = IS, E = IV, F = acf-

1440, G = mean. Dashed line: line of optimal solutions for equal costs for true and false 

positives. The results of our binary logistic regression are shown in this figure denoted by 

LR.

Note: A = variance, B = kurtosis, C = acf-1, D = IS, E = IV, F = acf-1440, G = mean. 1 = (acf-1440), 2 = (acf-1440 + acf-1), 

3 = (acf-1440 + acf-1 + kurtosis), 4 = (acf-1440 + acf-1 + kurtosis + variance), 5 = (acf-1440 + acf-1 + kurtosis + variance + 

mean), 6 = (acf-1440 + acf-1 + kurtosis + variance + mean + IV), 7 = (acf-1440 + acf-1 + kurtosis + variance + mean + IV + 

IS). LR Logistic regression solution (cut off = 0.59, 80% correctly classified). 
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S8 Figure of true positive rate and 1-False positive rate-curve - one-sided

Introduction, method, and discussion

See S7. Performance of the EWS and combinations using the one-sided tests. Gray triangles 

represent the individual EWS, whilst the black dots represent the cumulative total. The 

triangles correspond respectively to: A = variance, B = kurtosis, C = acf-1, D = IS, E = IV, F 

= acf-1440, G = mean. Dashed line: line of optimal solutions for equal costs for true and false 

positives. The results of our binary logistic regression are shown in this figure denoted by 

LR. 

Note: A = variance, B = kurtosis, C = acf-1, D = IS, E = IV, F = acf-1440, G = mean. 1 = (kurtosis), 2 = (kurtosis + acf-1), 3 

= (kurtosis + acf-1 + variance), 4 = (kurtosis + acf-1 + variance + IV), 5 = (kurtosis + acf-1 + variance + IV + acf-1440), 6 = 

(kurtosis + acf-1 + variance + IV + acf-1440 + mean), 7 = (kurtosis + acf-1 + variance + IV + acf-1440 + mean + IS). LR 

Logistic regression solution (cut off = 0.5, 80% correctly classified). 
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Abstract 

While the negative association between physical activity and depression has been well 

established, it is unclear what precise characteristics of physical activity patterns explain this 

association. Complexity measures may identify previously unexplored aspects of objectively 

measured activity patterns, such as the extent to which individuals show repetitive periods of 

physical activity and the diversity in durations of such repetitive activity patterns. We 

compared the complexity levels of actigraphy data gathered over 4 weeks (~40000 data 

points each) for every individual, from non-depressed (n=25) and depressed (n=21) groups 

using recurrence plots. Significantly lower levels of complexity were detected in the 

actigraphy data from the depressed group as compared to non-depressed controls, both in 

terms of lower mean durations of periods of recurrent physical activity and less diversity in 

the duration of these periods. Further, diagnosis of depression was not significantly 

associated with mean activity levels or measures of circadian rhythm stability, and predicted 

depression status better than these. 

Introduction 

The association between physical activity and depression is well documented (1–3). Group-

level studies on levels of physical activity have shown an inverse association between 

physical activity and depressive symptoms (4,5). Longitudinal studies, including intervention 

studies have shown that physical activity and exercise reduces symptoms and improves mood 

in individuals suffering from depression (6,7). Studies have also shown that the association 

between depression and physical activity, may be bidirectional (7,8). An unresolved question, 

however, is what precise characteristics of activity patterns are responsible for the impact of 

physical activity on mental health. 

Currently, most interventions work under the assumption that it is only the pure level of 

activity that impacts mood. Other studies, however,  argue that, in addition to mean levels of 

physical activity, diurnal rhythms in activity are relevant in explaining why activity levels are 

associated with depression (9–11). Healthy people are most active closer to the middle of the 

day and less active in mornings and evenings. Studies show that in depressed people, the 

activity rhythm peaks later than in healthy people (11–14). The shifted timing influences 

sleep quality and diminishes levels of positive affect during the day (15,16), and is 

hypothesized to contribute to depression. However, studies have been inconsistent  and effect 
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sizes are small (17,18), suggesting that there may be other possible explanations for the 

association between activity patterns and depression. Currently, studies have only examined 

mean activity levels or activity rhythms with a constant periodicity (daily, weekly or annual 

activity rhythms) in association with depression (19–21) and were not able to extract other 

sorts of recurring activity patterns, with varying periodicity, which may be relevant.  

A new approach to examine activity patterns is to use tools from complexity science (22–24). 

Complexity measures may provide new and complementary information on the nature of 

activity patterns in daily life as these measures are able to differentiate random activity spikes 

(noise) from patterns of activity that seem to repeat themselves, even if they vary in the 

timing of return (varying periodicity). Actigraphy patterns have been shown to be made up of 

a combination of intrinsic and extrinsic factors which give rise to activity time-series that 

have a complex nonlinear mechanism overlaid with random fluctuations (25). For example, 

restlessness behavior, which would generate movements at unpredictable moments is 

expected to show up as noise, rather than as specific repeating patterns of activity, whereas 

moments of sport, biking to work, or certain social activities that would involve elevated 

levels of physical activity would reveal themselves in repeating patterns of activity. Only 

these latter activity patterns add to the calculated complexity of the signal. Furthermore, not 

only the amount of repetition, but also the variety of repeating patterns adds to the calculated 

complexity of the measure. For example, differing durations of activities like biking, 

swimming or running would each cause a particular pattern of activity. When these activities 

are repeated in time, they constitute a diversity of recurrent physical activity patterns, which 

add to the complexity of the signal. Complexity measures would thus provide an objective 

way to measure to what extent these different types of physical activity (noise versus 

repeating activity patterns) are present in people with (risk for) depression. If we get a better 

understanding of what activity patterns differentiate depressed versus healthy people, this 

may not only provide more insight in how physical activity relates to depression, but, in the 

case that such patterns are causal to depression, it may also bring new possibilities for 

diagnostic tools to evaluate whether the patient exhibits healthy physical activity patterns. 

Moreover, complexity measures quantify an aspect of physical activity that is not captured by 

existing methods such as the mean activity levels or non-parametric circadian rhythm 

variables. 



102 

The study of physical activity patterns using small motion sensor detectors (accelerometers) 

that are encased in a unit about the size of a wristwatch and can be worn continuously for 

days to months, is called actigraphy (26). Studying actigraphy patterns of individuals has 

becomes increasingly popular (27). Actigraphs estimate levels of physical activity in an 

objective way, without recall bias (28,29). Furthermore, the measurement of activity patterns 

using these light-weight devices, is non-invasive, with low burden to the participants, and 

therefore allows for the possibility of long-term monitoring of physical activity patterns. 

In the current study, we aim to understand the differences in the complexity  of recurrent 

physical activity patterns of depressed and non-depressed individuals using actigraphy. In 

line with the argumentation given above we expect decreased levels of complexity (lower 

duration and diversity of recurrent activity patterns) in depressed people versus non-

depressed people. For this purpose, we will use a unique sample of depressed and non-

depressed people who were monitored for a month with accelerometers. 

Materials and methods 

Sample. The data used was collected as part of the Mood and Movement in Daily Life 

(MOOVD) study, which aims to study the dynamic association between mood and physical 

activity (30,31). All participants were aged between 20 and 50, and were monitored for 30 

days using electronic diaries, actigraphy and saliva samples. In this paper we will use the 

actigraphy data and the diagnostic interview data on depression diagnosis. Data was obtained 

from 54 participants (depressed to non-depressed ratio 1:1) who were pair matched on 

gender, BMI, smoking status, and age. The participants were screened for their severity of 

depression based on their scores on the Beck Depression Index (BDI) (32). Scores below 14 

are associated with minimal depression, while scores of 14 and above are associated with 

mild, moderate or severe levels of depressive symptoms. Participants scoring above 14 and 

participants scoring below 9, were invited for a diagnostic interview to establish whether they 

fulfilled the criteria for depression or were free of any mood disorders, respectively. For 

further details, we refer the reader to (30).  

Measurements 

Physical activity was measured using the ActiCal© (Respironics,Bend,OR) which is an omni-

directional, water-resistant actigraph, which was worn on the non-dominant wrist. The 

activity counts were sampled at 1 minute-intervals and were used as the measure for physical 
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activity. Details of how activity measurements are conducted in ActiCal can be found in Heil, 

2006 (33).   

Statistical analysis 

Our analysis is primarily focused on the recurrence quantification analysis (RQA) of 

actigraphy data. It quantifies the relative abundance, duration and diversity of recurrent 

patterns in a time-series. This kind of analysis has proved to be very useful in many different 

fields in science, including psychology (34–36).  

Data pre-processing 

Prior to the recurrence quantification analysis, we carried out two preprocessing steps. The 

first reduced the overall size of the data by resampling. This is achieved by averaging the data 

through 10-minute bins. This averaging or binning step gave us the average activity counts 

every ten minutes, which reduced the total length of the time-series, and computational time 

needed by the algorithm. To maintain uniformity, all datasets were constrained to a length of 

4000 data points after binning, which gave us nearly 28 days or four weeks of data per 

participant. All datasets were ensured to have at least 3000 data points or about 21 days of 

data. 

A second preprocessing step involved a rank transformation on the data (37–39). This 

analysis focused on methods that depend mostly on the ordering and rhythms in the time-

series. Hence we rank transformed all the datasets initially, resulting in a uniform amplitude 

distribution. The resulting transformation preserved the rank and time ordering and 

consequently the dominant periodicities of the time-series. Using the rank transformation 

made sure that the quantifiers derived from the activity counts time-series are not affected by 

extreme events, such as sudden spurts in activity. In addition the transformation put all the 

time-series from different subjects onto an equal footing when it came to amplitude. This 

became especially useful in the context of the choice of a recurrence threshold, which we 

describe in the next subsection. The results from this rank transformed data, were then only 

related to the ordering of the time-series and not to the actual amounts of activity counts by a 

subject. This conversion was done by replacing a point in the time-series by its rank in the 

time-series. The resulting time-series of ranks was then divided by N, which was the total 

length of the time-series, which constrained the distribution between 0 and 1.  
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Recurrence quantification analysis 

We initially conducted a recurrence quantification analysis (RQA) in all individuals in the 

MOOVD dataset. Then we compared the recurrence plot properties of the non-depressed and 

depressed groups with regard to complexity measures. Recurrence plots are simple binary 

plots that visualize the pattern of repetitions or rhythms in a time-series. Fourier transform 

based methods capture repetitions that are periodic, whereas circadian rhythm variables 

consider rhythms at a day level. RQA is free from these constrains and the exact patterns in a 

recurrence plot give us a deeper understanding about the nature of the underlying dynamics 

that the time-series is derived from.  

A recurrence plot reveals the patterns a system makes when it revisits the same neighborhood 

of space. When the dynamics of a system is purely stochastic, the recurrence plot shows no 

discernable patterns. On the other hand, when the system shows deterministic behavior the 

recurrence plot shows distinct patterns in the form of horizontal and diagonal lines. These are 

quantified using RQA.  

A recurrence plot is constructed in the following way. A recurrence threshold or distance is 

first chosen, say ε. The time-series is then scanned such that all points that fall within ε 

distance of each time-series point is identified. The recurrence plot is then generated as a 

planar plot of ordered time-series points along the x and y axes. A schematic describing this 

process is shown in Figure 1, where a region in blue, of size 2ε, is marked in the time-series 

in the upper panel to demonstrate this recurrence threshold. If two time-series points fall 

within ε distance of each other, the corresponding point is marked using a dark spot in the 

recurrence plot. In the time-series in Figure 1, all points within the blue rectangle in the upper 

panel are marked as black points within the shaded region in the lower panel. The recurrence 

quantification analysis in this paper is conducted using the free standalone software, TOCSY 

(40–42). 

Prior to studying the structures in the recurrence plot, the threshold ε needs to be identified. 

In this study, we set the recurrence threshold by constraining the recurrence rate or density of 

dark points in the plot. The recurrence rate gives a probability that a specific state will recur. 

For our study we set the recurrence threshold as the distance where the density is 0.05, i.e. 

about 5% of the recurrence plot is made of dark points. A fixed density has been used 

previously in multiple studies to determine ε and is known to be useful in detecting finer 
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changes in the recurrence plot structure(43,44). A flowchart describing the process is shown 

in Figure 2. 

Once the recurrence threshold is fixed, we quantify two main structures in the recurrence 

plot, the diagonal and vertical lines. The diagonal line structures in the recurrence plot are 

associated with the level of determinism in the time-series, since random processes will show 

these structures very rarely, whereas deterministic processes tend to show these structures 

more.  It occurs either when a part of the time-series changes monotonically or when two 

parts of the time-series show similar local evolution or change. The vertical lines on the other 

hand indicate periods of  “stasis” or very slow evolution. In a sense, it shows the length of the 

activity, with longer vertical lines suggesting an activity that lasts for longer. We are 

primarily interested in the mean and entropy, which represent the duration and diversity 

associated with the distributions of the diagonal and vertical lines(41). The average of the 

diagonal line distribution shows the average duration of recurring physical activity patterns in 

a time-series. The entropy quantifies the diversity associated with the diagonal structures in 

the recurrence plot. This provides a measure of the extend of time scales involved in the 

diagonal line distribution. Similarly the mean of the vertical line distribution shows the mean 

levels of stasis associated with the physical activity patterns (i.e how long an activity persists) 

and the entropy yields the diversity associated with the vertical line distribution(41). Another 

important quantifier that is associated with the diagonal line structure is called the 

determinism or DET measure. The DET measure reflects the ratio of points that form 

diagonal structures to the ratio of all recurring points. Thereby, it provides an estimate of how 

often different parts of a time-series co-evolve as a fraction of the total number of data point 

pairs in the plot. For a purely noisy process, with no underlying dynamics, this measure is 

very small, whereas for a process with underlying deterministic dynamics, the DET measure 

is high. Similarly, the laminarity or LAM measure reflects the ratio of points that form 

vertical structures to the ratio of all recurring points. This provides an estimate of how often 

slowly evolving processes occur, as a fraction of the total number of data point pairs. For 

instance, frequent periods of rest or physical activity that results in constant activity counts 

for an extended duration will lead to a higher LAM measure as opposed to cases when such 

patterns are rare. A further useful quantifier in this context is the ratio of the  LAM to DET 

measure, which quantifies how often vertical structures appear in the system as a fraction of 

diagonal structures (45). While all the quantifiers mentioned above relate to the complexity of 

patterns found in the recurrence plot, the mean and entropy of the distributions relate directly 
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to the duration of recurrent activity patterns and the diversity of such patterns. A summary of 

the recurrence-based quantifiers used in this paper is given in Table 1. 

To illustrate the difference between time-series data that is dominated by noise processes and 

one which is dominated by a periodic signal, we contaminated a sine wave with different 

levels of noise. Sample recurrence plots from these noise contaminated sine waves, along 

with a pure sine wave and a pure white noise signal, are shown in Figure 3. The simulation of 

sine waves contaminated with noise shows instances where a strong rhythm along with 

randomness is present, similar to daily rhythms which are prominent in actigraphy data. As 

the random component becomes larger, the recurrence plot becomes more diffused. 

Missingness 

Many datasets showed periods of non-wear in the beginning or the end of the collection 

period. Such periods were removed through visual inspection. Datasets that were left with 

less than 3000 measurement points, after resampling into 10-minute bins, were eliminated 

initially. After the recurrence plot construction, all datasets for which the density threshold of 

0.05 was exceeded at very low recurrence thresholds, were eliminated. This happens when 

the dataset has considerable periods of inactivity, which leads to cluttering in the recurrence 

plot.  

Hypothesis testing 

Group differences in complexity were examined using a t-test. The t-test for independent 

samples checks if two independent groups have identical mean values. We use the Welch t-

test which does not assume equal population variance, and generalizes to unequal sample 

sizes (47). All statistical analyses were performed using the scipy package in python (48).   

Traditional actigraphy quantifiers 

In order to check for differences in discriminative ability and overlap between the current 

complexity measures and more traditional measures such as mean levels of activity and 

circadian rhythm variables, the latter variables were extracted as well from the actigraphy 

data. Both the mean and circadian rhythm variables have been used in differentiating healthy 

and depressed individuals from actigraphy data.  The mean activity was calculated as the 

average number of activity counts per individual. The circadian rhythm variables used were 

the interdaily stability (IS), intradaily variability (IV) and relative amplitude (RA) (49). The 

IS quantifies stability of the rhythm between days. It can vary between 0 and 1, with higher 
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values indicating a more stable daily rhythm. The IV indicates the fragmentation of the sleep-

wake rhythm and varies roughly between 0 and 2. Higher values indicates higher 

fragmentation. The RA gives a description of how different the most active and least active 

periods in a day are. Further details about calculation may be found in (50). Circadian 

measures were calculated using the ACTman package in R (51). Using t-tests, we distinguish 

whether the means of the distributions of values between the two groups were significantly 

different. Furthermore, we calculated the correlations between the complexity and the above-

mentioned variables, using the Spearman rank correlation coefficient. Apart from being 

robust to outliers, the rank correlation coefficients have the added advantage that they finds 

correlation even if the monotonic relationship between the covariates is nonlinear(39). 

Finally, we used logistic regression to predict the diagnostic status with traditional actigraphy 

quantifiers and recurrence quantifiers. The pseudo-R2 values were then compared between 

the different quantifiers to quantify goodness of fit.  
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Results 

We present the results of the between-group analysis comparing the RQA measures of the 

depressed group with the non-depressed group. One dataset was excluded initially due to 

insufficient data (< 3000 points). Another seven datasets were excluded due to cluttering in 

the recurrence plot which led to a recurrence rate larger than 0.05 even at very low values of 

the ε threshold. This left 21 depressed and 25 non-depressed participants. Sample recurrence 

plots from a non-depressed and a depressed individual are presented in Figure 4.  

Descriptives and traditional actigraphy differences between the groups 

Differences in demographic and clinical characteristics between the depressed and non-

depressed subjects are shown in Table 2. In line with the fact that demographic variables are 

pair matched in the MOOVD study, we did not observe any significant differences. In Table 

3 we showed the group differences between commonly used quantifiers of actigraphy, 

namely the mean activity counts and nonparametric circadian rhythm variables for actigraphy 

analysis proposed in (49). No significant differences for these quantifiers between the two 

groups were observed. 

Results of recurrence quantification analysis 

We then checked the mean differences in the recurrence plot parameters for the two groups.  

A significant (p < .05) difference between the two groups in the mean and entropy of the 

diagonal line length distribution and in the ratio of LAM to DET was found. The depressed 

group showed lower mean and entropy for the diagonal line distribution, whereas it showed a 

larger LAM to DET ratio, compared to the non-depressed group. The distributions of these 

three measures for the depressed and non-depressed groups are depicted in Figure 5.   

Overall, it was found that almost all the complexity measures were either significant (p<.05) 

or borderline significant (p < .1) and in the expected direction. The means of the considered 

measures for the two groups and the corresponding t-statistic and p-value are shown in Table 

4. A Bonferroni correction in the level of α for testing significance when conducting multiple

tests causes all significant results to be lost.

A logistic regression was used to check whether the individual recurrence measures predicted 

the depression status better than the traditional actigraphy measures. The recurrence measures 

were found to have higher pseudo R2 values than traditional actigraphy measures. Moreover, 

using a combination of traditional actigraphy measures and novel recurrence plot based 
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actigraphy measures yielded a higher R2 value than each did individually, suggesting that 

they provide complementary information. For details, please refer to the supplementary 

material.  

Correlations 

Finally, the correlations of the recurrence plot parameters with the traditional variables 

considered earlier in this section and with each other were analyzed to examine the extend of 

overlap between these quantifiers. These are listed in Table 5. We see a perfect correlation 

between the mean and entropy measures of the diagonal line distribution. Correlations 

between average level of physical activity and diurnal rhythm variables on the one hand and 

complexity measures on the other hand were generally small. One weak but significant 

correlation was found between the interdaily stability and the LAM to DET ratio. 
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Discussion 

This work explored how complex recurrent patterns in physical activity are associated with 

depression. Significant differences between the non-depressed and depressed groups for 

multiple recurrence plot quantifiers, which were related to duration and diversity of physical 

activity patterns were observed. Using recurrence quantification analysis an overall lower 

level of the complexity of recurrent longitudinal patterns in depressed patients versus controls 

was shown. While the study does not conclusively prove differences in complexity between 

the two groups, especially after taking into account multiple testing corrections, it does leave 

room for cautious optimism about using these quantifiers to study depression using physical 

activity data, in future research. 

The current work represents an important first step in multiple ways. The methodology used 

in this work goes beyond the way how classical approaches related activity patterns to 

depression. By using novel methods from complexity science, we were now for the first time 

able to capture other relevant aspects of recurrent temporal patterns of physical activity such 

as the duration and diversity of such activity patterns that have varying periodicity. We were 

also able to relate these novel aspects of physical activity to depression. Furthermore, this 

method allowed for discriminating noise patterns, which do not contribute to the complexity 

measures examined, from specific recurrent activity periods which do add to the calculated 

complexity measures.  

Various resulting complexity measures significantly associated with a diagnosis of 

depression, whereas traditional measures such as mean level and diurnal rhythm measures did 

not. Moreover, complexity measures predicted the depression status better than the 

traditionally used actigraphy measures. This implies, first, that depressed people showed 

lower total duration of specific recurrent activities, such as walking, biking, or other sportive 

activities and less diversity in the durations of such activities. It may be these differences that 

mainly characterize how physical activity is different between depressed and non-depressed 

people. We should note, though, that in these actigraphy measures duration and diversity 

overlapped almost completely. Thus, people with longer duration of activities also showed 

higher diversity of activities. This means that in this study we are unable to differentiate 

between these two aspects of complexity. Second, the fact that the complexity measures 

performed better in discriminating the two groups than simply the mean value of physical 

activity is worth noting. Reduction in physical activity is known to be a defining 

characteristic of depression and studies using objective actigraphy have shown that depressed 
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individuals have a lower level of physical activity than individuals without depression(11,52). 

In this context, the lack of significant differences in physical activity between the depressed 

and non-depressed groups, which was also observed previously in a sub sample of the same 

study(31), is striking. One possible reason could be that the MOOVD study which focused on 

mood and movement attracted individuals with higher activity to begin with. Further, large 

variations in the BDI-II scores between baseline and follow-up were observed in the 

depressed group (see Table 2). Hence the mean physical activity per person is possibly 

averaged over periods with differing levels of depressive symptoms, resulting in less 

significant differences between the two groups. Taken together, this study makes a case for 

using more complex measures to understand reduction in physical activity in depression and 

suggests the need for within subject studies to understand the same. A previous study 

suggested that more complex dynamic measures of variables of interest in the field of 

psychopathology would not be able to contribute more information than the mean (53). This 

study, as well as other recent studies (54,55) suggest otherwise. Third, as there was minimal 

overlap between the complexity and the traditional measures as shown by the correlations in 

Table 5, findings suggest that the complexity measures provide complementary information 

regarding activity patterns over and above currently used indicators. This finding is 

supplemented with a linear regression analysis (Supplementary 1), which showed that the 

goodness of fit obtained using recurrence-based variables are consistently higher than those 

achieved by classically used actigraphy variables.   

While this work was exploratory in nature, and should be considered as a first foray into 

studying the recurrence patterns of activity data in psychopathology, it is not unlikely that 

future studies would show that the reported differences in complexity of physical activity 

patterns between depressed and non-depressed people also contribute to the development of 

depressive symptoms. The current findings then have important implications for clinical 

practice. In that case the RQA complexity measure may be promising as a diagnostic tool in 

depressed patients to evaluate to what extent their physical activity patterns have a healthy 

level of complexity. Such a diagnostic tool could be implemented clinically with very low 

participant burden, as actigraphy data can be collected unobtrusively. Furthermore, automatic 

algorithms can be generated to provide  conclusions to clinicians based on the patient’s 

actigraphy patterns, similar to how medical specialists in other fields obtain objective 

information to aid their diagnostics, such as information on blood pressure or heart rhythm 
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(56–58). Recurrence quantification analysis itself has been recently proposed as a promising 

biomarker to identify autism spectrum disorders from EEG data (59). 

We have some recommendations for future research. First, it is relevant to explore whether 

changes in the complexity of physical activity patterns actually precede the onset of symptom 

changes in individuals with depression. Recurrence quantification analysis has previously 

been shown to be successful in predicting upcoming transitions in many other scenarios 

including in epileptic seizures, stock market crashes and combustion noise (60–62). 

Therefore, it is interesting to examine whether changes in the current complexity measure can 

foresee the start of transitions towards higher levels of depression. The TRANS-ID study has 

collected unique personalized datasets in which people are followed intensively over the 

course of symptom transitions, including actigraphy measurements (55,63). This is therefore 

the ideal design to test the above hypothesis. If the observed change in complexity in physical 

activity as reported in this study, indeed precedes symptom transitions in depression, then this 

would, first, provide support for the causality of these patterns for developing symptoms. 

Second, this may suggest that the current complexity measure could be used to foresee 

clinically relevant increases in depressive symptoms. Another recommendation for future 

studies is to examine whether intervention on physical activity patterns in the direction of 

increased complexity in depressed patients would lead to a reduction in the level of 

symptoms. 

Limitations 

One methodological limitation is that 13% of the participants failed to show enough variation 

in actigraphy patterns to perform the RQA analyses. The latter analyses cannot be performed 

with the presence of too many zeros (perfect inactivity) in the data, as this would result in 

cluttering and consequent masking of information. Therefore, potential application in clinical 

practice should take into account that this method will not work for some patients who show 

too little activity. Another methodological issue is the sample size. Although, the power to 

calculate the complexity outcomes per person was high, as continuous actigraphy data were 

available for four weeks for each person leading to highly reliable values of complexity for 

every individual, the between-person power to compare group differences was lower. This 

may explain why none of the group comparisons regarding complexity outcomes were 

statistically significant after multiple testing corrections. Therefore, there is a need for 

replication of this finding with larger sample sizes. 
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Conclusions 

This study explored the association between physical activity and depression by studying the 

recurrent activity patterns that are present in the actigraphy data of depressed and non-

depressed individuals. It is concluded that the diversity and average duration of activities was 

significantly associated with depression, while mean levels in physical activity and circadian 

rhythm variables were not. This novel finding has important implications for understanding 

how physical activity relates to mood disorders like depression. If future studies will replicate 

this finding and show support that complexity patterns causally relate to development of 

symptoms, RQA measures may constitute an additional tool for personalized diagnostics and 

treatment strategies, in depression.  

List of abbreviations 

DET: Determinism; Lavg: Average diagonal line length; Lent: Entropy of diagonal line 

distribution; LAM: Laminarity; LAM/DET: Laminarity to determinism ratio; Vavg: Average 

vertical line length; Vent: Entropy of vertical line distribution; SE: Standard error on the 

mean; RQA: Recurrence quantification analysis 

Data availability. The datasets generated and/or analysed during the current study are not 

publicly available due to the nature of the data (intensive longitudinal actigraphy data), which 

cannot be considered fully anonymous. However, data are available from the corresponding 

author on reasonable request. The codes used for data analysis in this paper may be found at 

github.com/sgeorge91/ComplexityInDepression. 

Acknowledgements. This study was supported by the European Research Council (ERC) 

under the European Union’s Horizon 2020 research and innovation programmme (ERC-CoG-

2015; No 681466 to M. Wichers). Author contributions S.V.G. and M.W. designed the study 

and wrote the manuscript. S.V.G. and Y.K.K. analysed the data. S.B. designed the MOOVD 

study and collected the data. All authors jointly interpreted the results and revised and 

approved the manuscript.  

Competing interests. The authors declare no competing interests. 

Supplementary Information. The online version contains supplementary material available 

at https://doi.org/ 10.1038/s41598-021-92890-w. Correspondence and requests for materials 

should be addressed to S.V.G. 



117 

References 
1. Dunn AL, Trivedi MH, O’Neal HA. Physical activity dose-response effects on  outcomes of 

depression and anxiety. In: Database of Abstracts of Reviews of Effects (DARE): Quality-assessed
Reviews [Internet]. Centre for Reviews and Dissemination (UK); 2001. 

2. Rebar AL, Stanton R, Geard D, Short C, Duncan MJ, Vandelanotte C. A meta-meta-analysis of the 
effect of physical activity on depression and anxiety in non-clinical adult populations. Health Psychol 
Rev. 2015;9(3):366–78.

3. Teychenne M, Ball K, Salmon J. Sedentary behavior and depression among adults: a review. Int J 
Behav Med. 2010;17(4):246–54.

4. Weyerer S, Kupfer B. Physical exercise and psychological health. Sport Med. 1994;17(2):108–16.

5. Farmer ME, Locke BZ, Mościcki EK, Dannenberg AL, Larson DB, Radloff LS.  Physical activity and
depressive symptoms: the NHANES I Epidemiologic Follow-up Study. Am J Epidemiol. 
1988;128(6):1340–51.

6. Strawbridge WJ, Deleger S, Roberts RE, Kaplan GA. Physical activity reduces the risk of subsequent
depression for older adults. Am J Epidemiol. 2002;156(4):328–34.

7. Teychenne M, Ball K, Salmon J. Physical activity and likelihood of depression in adults: a review. 
Prev Med (Baltim). 2008;46(5):397–411.

8. Roshanaei-Moghaddam B, Katon WJ, Russo J. The longitudinal effects of depression on physical 
activity. Gen Hosp Psychiatry. 2009;31(4):306–15.

9. Rawson MJ, Cornélissen G, Holte J, Katinas G, Eckert E, Siegelová J, et al. Circadian and circaseptan
components of blood pressure and heart rate during depression. Scr Med. 2000;73:117–24.

10. Germain A, Kupfer DJ. Circadian rhythm disturbances in depression. Hum Psychopharmacol Clin Exp. 
2008;23(7):571–85.

11. Minaeva O, Booij SH, Lamers F, Antypa N, Schoevers RA, Wichers M, et al. Level and timing of 
physical activity during normal daily life in depressed and non-depressed individuals. Transl 
Psychiatry. 2020;

12. Levandovski R, Dantas G, Fernandes LC, Caumo W, Torres I, Roenneberg T, et al. Depression scores 
associate with chronotype and social jetlag in a rural population. Chronobiol Int. 2011; 

13. Hori H, Koga N, Hidese S, Nagashima A, Kim Y, Higuchi T, et al. 24-h activity  rhythm and sleep in 
depressed outpatients. J Psychiatr Res. 2016;77:27–34.

14. Teicher MH, Lawrence JM, Barber NI, Finklestein SP, Lieberman HR, Baldessarini RJ. Increased
Activity and Phase Delay in Circadian Motility Rhythms in Geriatric Depression: Preliminary 
Observations. Arch Gen Psychiatry. 1988; 

15. Vitale JA, Roveda E, Montaruli A, Galasso L, Weydahl A, Caumo A, et al. Chronotype influences 
activity circadian rhythm and sleep: Differences in sleep quality between weekdays and weekend. 
Chronobiol Int. 2015;

16. Miller MA, Rothenberger SD, Hasler BP, Donofry SD, Wong PM, Manuck SB, et al. Chronotype 
predicts positive affect rhythms measured by ecological momentary assessment. Chronobiol Int. 2015; 

17. Burton C, McKinstry B, Szentagotai Tǎtar A, Serrano-Blanco A, Pagliari C, Wolters M. Activity 
monitoring in patients with depression: A systematic review. Journal of Affective Disorders. 2013. 

18. Au J, Reece J. The relationship between chronotype and depressive symptoms: A meta-analysis. 
Journal of Affective Disorders. 2017. 

19. Albert PS, Hunsberger S. On analyzing circadian rhythms data using nonlinear mixed models with 
harmonic terms. Biometrics. 2005;61(4):1115–20.



118 

20. Shinagawa M, Otsuka K, Murakami S, Kubo Y, Cornelissen G, Matsubayashi K, et al. Seven-day (24-
h) ambulatory blood pressure monitoring, self-reported depression and quality of life scores. Blood 
Press Monit. 2002;7(1):69–76.

21. Maes M, Meltzer HY, Suy E, De Meyer F. Seasonality in severity of depression: relationships to 
suicide and homicide occurrence. Acta Psychiatr Scand. 1993;

22. Lang M, Krátk\`y J, Shaver JH, Jerotijević D, Xygalatas D. Effects of anxiety on spontaneous 
ritualized behavior. Curr Biol. 2015;25(14):1892–7.

23. Martín-Martínez D, Casaseca-de-la-Higuera P, Alberola-López S, Andrés-de-Llano J, López-
Villalobos JA, Ardura-Fernández J, et al. Nonlinear analysis of actigraphic signals for the assessment
of the attention-deficit/hyperactivity disorder (ADHD). Med Eng Phys. 2012; 

24. Parro VC, Valdo L. Sleep-wake detection using recurrence quantification analysis. Chaos. 2018;

25. Hu K, Ivanov PC, Chen Z, Hilton MF, Stanley HE, Shea SA. Non-random fluctuations and multi-scale 
dynamics regulation of human activity. Phys A Stat Mech its Appl. 2004; 

26. Ong JC, Arnedt JT, Gehrman PR. Insomnia Diagnosis, Assessment, and Evaluation. In: Principles and 
Practice of Sleep Medicine. 2017. 

27. Tazawa Y, Wada M, Mitsukura Y, Takamiya A, Kitazawa M, Yoshimura M, et al. Actigraphy for 
evaluation of mood disorders: A systematic review and meta-analysis. Journal of Affective Disorders. 
2019.

28. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures 
of physical activity for children. J Sports Sci. 2008; 

29. Kaplan KA, Talbot LS, Gruber J, Harvey AG. Evaluating sleep in bipolar disorder: Comparison
between actigraphy, polysomnography, and sleep diary. Bipolar Disord. 2012;

30. Booij SH, Bos EH, Bouwmans MEJ, van Faassen M, Kema IP, Oldehinkel AJ, et al. Cortisol and $α$-
amylase secretion patterns between and within depressed and non-depressed individuals. PLoS One. 
2015;10(7):e0131002.

31. Stavrakakis N, Booij SH, Roest AM, de Jonge P, Oldehinkel AJ, Bos EH. Temporal dynamics of 
physical activity and affect in depressed and nondepressed individuals. Heal Psychol. 2015;34(S):1268. 

32. Beck AT, Steer RA, Brown GK. Beck depression inventory-II. San Antonio. 1996;78(2):490–8.

33. Heil DP. Predicting activity energy expenditure using the actical® activity monitor. Res Q Exerc Sport. 
2006;

34. Marwan N. A historical review of recurrence plots. European Physical Journal: Special Topics. 2008. 

35. Jenkins BN, Hunter JF, Richardson MJ, Conner TS, Pressman SD. Affect Variability and 
Predictability: Using Recurrence Quantification Analysis to Better Understand How the Dynamics of 
Affect Relate to Health. Emotion. 2019; 

36. Lichtwarck-Aschoff A, Hasselman F, Cox R, Pepler D, Granic I. A characteristic
destabilization profile in parent-child interactions associated with treatment efficacy for aggressive 
children. Nonlinear Dynamics Psychol Life Sci. 2012; 

37. Pompe B. Ranking and Entropy Estimation in Nonlinear Time Series Analysis. In: Nonlinear Analysis 
of Physiological Data. 1998.

38. Conover WJ, Iman RL. The Rank Transformation as a Method of Discrimination with Some Examples.
Commun Stat - Theory Methods. 1980;

39. Ziegel E, Press W, Flannery B, Teukolsky S, Vetterling W. Numerical Recipes: The Art of Scientific 
Computing. Technometrics. 1987; 



119 

40. TOCSY - Toolbox for Complex Systems (Recurrence Plots, Cross Recurrence Plots, System 
Identification, ACE, Nonlinear Wavelet Analysis, Nonlinear Regression Analysis, Adaptive Filtering, 
Coupling Direction) [Internet]. [cited 2019 Dec 19]. Available from: http://tocsy.pik-potsdam.de/ 

41. Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. 
Phys Rep. 2007;438(5–6):237–329.

42. Thiel M, Romano MC, Read PL, Kurths J. Estimation of dynamical invariants without embedding by 
recurrence plots. Chaos. 2004; 

43. Eroglu D, Marwan N, Prasad S, Kurths J. Finding recurrence networks’ threshold adaptively for a 
specific time series. Nonlinear Process Geophys. 2014; 

44. Javorka M, Trunkvalterova Z, Tonhajzerova I, Lazarova Z, Javorkova J, Javorka K. Recurrences in 
heart rate dynamics are changed in patients with diabetes mellitus. Clin Physiol Funct Imaging. 2008; 

45. Rusinek R, Zaleski K. Dynamics of thin-walled element milling expressed by recurrence analysis. 
Meccanica. 2016;51(6):1275–86.

46. Rusinek R, Lajmert P, Krzysztof K, Kruszynski B, Warminski J. Chatter identification methods on the 
basis of time series measured during titanium superalloy milling. Int J Mech Sci. 2015; 

47. Welch BL. The generalization ofstudent’s’ problem when several different population variances are 
involved. Biometrika. 1947;34(1/2):28–35.

48. Jones E, Oliphant T, Peterson P, others. SciPy: Open source scientific tools for Python. 2001; 

49. Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF. Alterations in the circadian rest-activity 
rhythm in aging and Alzheimer’s disease. Biol Psychiatry. 1990; 

50. Van Someren EJW, Swaab DF, Colenda CC, Cohen W, McCall WV, Rosenquist PB. Bright light 
therapy: Improved sensitivity to its effects on rest- activity rhythms in Alzheimer patients by 
application of nonparametric methods. Chronobiol Int. 1999; 

51. Kunkels YK, Knapen SE, Zuidersma M, Wichers M, Riese H, Emerencia AC. ACTman: Automated
preprocessing and analysis of actigraphy data. J Sci Med Sport. 2019; 

52. Difrancesco S, Lamers F, Riese H, Merikangas KR, Beekman ATF, van Hemert AM, et al. Sleep,
circadian rhythm, and physical activity patterns in depressive and anxiety disorders: A 2-week 
ambulatory assessment study. Depress Anxiety. 2019; 

53. Dejonckheere E, Mestdagh M, Houben M, Rutten I, Sels L, Kuppens P, et al. Complex affect dynamics 
add limited information to the prediction of psychological well-being. Nature Human Behaviour. 2019. 

54. Kuranova A, Booij SH, Menne-Lothmann C, Decoster J, Van Winkel R, Delespaul P, et al. Measuring 
resilience prospectively as the speed of affect recovery in daily life: A complex systems perspective on 
mental health. BMC Med. 2020; 

55. Schreuder MJ, Hartman CA, George S V., Menne-Lothmann C, Decoster J, Van Winkel R, et al. Early 
warning signals in psychopathology: What do they tell? Submitted. 2020; 

56. Jacobson NC, Weingarden H, Wilhelm S. Digital biomarkers of mood disorders and symptom change. 
npj Digit Med. 2019;

57. Insel TR. Digital phenotyping: Technology for a new science of behavior. JAMA - Journal of the 
American Medical Association. 2017. 

58. Jacobson NC, Weingarden H, Wilhelm S. Using Digital Phenotyping to Accurately Detect Depression 
Severity. J Nerv Ment Dis. 2019;

59. Heunis T, Aldrich C, Peters JM, Jeste SS, Sahin M, Scheffer C, et al. Recurrence quantification 
analysis of resting state EEG signals in autism spectrum disorder - a systematic methodological 
exploration of technical and demographic confounders in the search for biomarkers. BMC Med. 2018; 



120 

60. Acharya UR, Sree SV, Chattopadhyay S, Yu W, Ang PCA. Application of recurrence quantification 
analysis for the automated identification of epileptic EEG signals. Int J  Neural Syst. 2011;21(03):199–
211.

61. Addo PM, Billio M, Guegan D. Nonlinear dynamics and recurrence plots for detecting financial crisis. 
North Am J Econ Financ. 2013;26:416–35.

62. Kabiraj L, Saurabh A, Nawroth H, Paschereit CO. Recurrence analysis of combustion noise. AIAA J. 
2015;53(5):1199–210.

63. Trans-ID [Internet]. [cited 2020 Mar 27]. Available from: https://www.transid.nl/



121 

Tables 

Table 1: Definitions and interpretations in the context of activity data, for various 

recurrence plot quantifiers that are used in this work. 

Quantifier Calculation Definition Interpretation 

DET Ratio of diagonal 

structures to total 

recurrence points. 

Level of deterministic 

activity in the data. 

Lower levels 

indicate more 

randomness  

LAM Ratio of vertical 

structures to total 

recurrence points. 

Level of slowly 

evolving processes in 

the time series. 

Higher levels 

indicate more 

activities that 

linger 

Lavg Mean length of 

diagonal structures 

Average duration of 

recurrent physical 

activity 

Higher levels 

indicate longer 

recurrent physical 

activities 

Lent Entropy of 

diagonal line 

distribution 

Diversity of durations 

of recurrent physical 

activity patterns 

Higher levels 

indicate recurrent 

physical activities 

of varying 

durations 

Vavg Mean length of 

vertical structures 

Average duration of 

static activity patterns 

Higher levels 

indicate lingering 

physical activities 

that last longer 
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Vent Entropy of vertical 

line distribution 

Diversity of durations 

of static activity 

patterns 

Higher levels 

indicate lingering 

physical activities 

of varying 

durations 

LAM/DET Ratio of LAM to 

DET measures 

Level of statis as 

compared to 

deterministic structure 

Changes in this 

ratio has been 

shown to be an 

indicator of 

change in 

stability(45,46). 

DET: Determinism; LAM: Laminarity; Lavg: Average diagonal line length; Lent: Entropy of diagonal line 

distribution; Vavg: Average vertical line length; Vent: Entropy of vertical line distribution; LAM/DET: 

Laminarity to determinism ratio 
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Table 2: The means for demographic and clinical measures for the non-depressed 

(n=25) (MeanN) and depressed (n=21) groups (MeanD)  

Demographic 

and clinical 

characteristics 

MeanN ± SE MeanD ± SE t-statistic p-value

Age 33.320±1.784 33.238±2.028 -0.030 0.976 

BMI 22.334±0.527 24.274±1.377 1.315 0.200 

Gender 24% male 29% male -0.384 (z-

statistic) 

0.351 

Pre-BDI-II 2.16±0.547 29.286±2.006 13.045 <0.001 

Post-BDI-II 2.360±0.688 20.381±2.486 6.987 <0.001 

The  t-statistic and p-value are listed.. The pre and post BDI-II scores are the BDI-II scores before and after the 

data collection, respectively. SE:Standard error on the mean, MeanN: Mean of the non-depressed group, 

MeanD: Mean of the depressed group 

Table 3: The means for traditional quantifiers of the actigraphy time series for the non-

depressed (n=25) and depressed (n=21) groups  

Quantifier MeanN ± SE MeanD ± SE t-statistic p-value Cohen’s 

d 

Average 

activity 

262.388±15.514 228.040±18.400 -1.427 0.161 0.435 

IS 0.368±0.065 0.424±0.800 0.542 0.591 -0.166

IV 1.414±0.130 1.256±0.120 -0.891 0.378 0.265 

RA 0.905±0.015 0.896±0.016 0.393 0.696 -0.117

 The t-statistic, p-value and effect size measured using Cohen’s d are listed. IS: Interdaily stability; IV: 

Intradaily variability; RA: Relative Amplitude; MeanN: Mean of the non-depressed group; MeanD: Mean of the 

depressed group; SE=standard error of the mean 
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Table 4: Means for the different recurrence plot measures for the non-depressed(n=25) 

and depressed(n=21) groups,  

Property MeanN ± SE MeanD ± SE t-statistic p-value Cohen’s d 

DET 0.359±0.022 0.308±0.019 -1.725 0.091 0.511 

Lavg 2.436±0.039 2.334±0.031 -2.018 0.050* 0.594 

Lent 0.853±0.042 0.725±0.044 -2.104 0.041* 0.634 

LAM 0.511±0.026 0.466±0.026 -1.168 0.249 0.353 

LAM/DET 1.446±0.018 1.517±0.024 2.336 0.025* -0.721

Vavg 3.079±0.095 2.864±0.080 -1.731 0.090 0.512 

Vent 1.352±0.056 1.206±0.056 -1.707 0.095 0.520 

The t-statistic, p-value and Cohen’s d are listed. The measures that show statistically significant differences are 

indicated with an * DET: Determinism; Lavg: Average diagonal line length; Lent: Entropy of diagonal line 

distribution; LAM: Laminarity; LAM/DET: Laminarity to determinism ratio; Vavg: Average vertical line 

length; Vent: Entropy of vertical line distribution, MeanN: Mean of the non-depressed group; MeanD: Mean of 

the depressed group; SE=standard error of the mean 
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Table 5: Correlation between commonly used actigraphy measures and recurrence plot 

measures  

Lavg Lent LAM/DET Avg 

Activity 

IS IV RA 

Lavg 1 0.999* -0.609 0.091 0.073 0.031 0.201 

Lent 1 -0.607 0.107 0.073 0.035 0.206 

LAM/DET 1 0.286 -

0.314* 

-0.098 0.013 

Avg Activity 1 -0.162 -0.132 0.157 

IS 1 0.355* -0.140

IV 1 -0.185

RA 1 

Only the recurrence plot measures that showed significant differences between the two 

groups are listed. The Table lists the Spearman correlation coefficient. Significant 

correlations(p<0.05) are marked with a *(p>0.05). 

IS: Interdaily stability; IV: Intradaily variability; RA: Relative Amplitude; Lavg: Average 

diagonal line length; Lent: Diagonal line entropy; LAM/DET: Laminarity to determinism 

ratio 
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Abstract 
Wired ambulatory monitoring of the electrocardiogram (ECG) is an established 

method used by researchers and clinicians. Recently, a new generation of wireless, compact, 

and relatively inexpensive heart rate monitors have become available. However, before these 

monitors can be used in scientific research and clinical practice, their feasibility, validity, and 

reproducibility characteristics have to be investigated. Therefore, we tested how two wireless 

heart rate monitors (i.e., the Ithlete photoplethysmography (PPG) finger sensor and the 

Cortrium C3 ECG monitor perform against an established wired reference method (the VU-

AMS ambulatory ECG monitor). Monitors were tested on cross-instrument and test-retest 

reproducibility in a controlled laboratory setting, while feasibility was evaluated in 

protocolled ambulatory settings at home. We found that the Cortrium and the Ithlete monitors 

showed acceptable agreement with the VU-AMS reference in laboratory setting. In 

ambulatory settings, assessments were feasible with both wireless devices although more 

valid data were obtained with the Cortrium than with the Ithlete. We conclude that both 

monitors have their merits under controlled laboratory settings where motion artefacts are 

minimized and stationarity of the ECG signal is optimized by design. These findings are 

promising for long-term ambulatory ECG measurements, although more research is needed to 

test whether the wireless devices’ feasibility, validity, and reproducibility characteristics also 

hold in unprotocolled daily life settings with natural variations in posture and activities. 
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Introduction 
In the last decennium, the number of heart rate monitors available for clinicians and 

researchers has increased steadily (El-Amrawy & Nounou, 2015). This opened opportunities 

for long-term monitoring of cardiac functions such as heart rate (HR) and heart rate variability 

(HRV) (Kemp & Quintana, 2013; Malik et al., 1996) in daily-life. When feasible and valid, 

long-term HR(V) monitoring may open-up possibilities for developing indicators of (mental) 

health processes complementary to those developed for the experience sampling method (ESM, 

or electronic dairy). ESM monitoring is a scientific method that has shown its potential in 

research and clinical practice (e.g. Schoevers et al., 2020; Shiffman et al., 2008; Vaessen et al., 

2019). It nowadays typically involves filling-out short questionnaires, multiple time a day for 

weeks/months on a smartphone. The time-series data derived from ESM monitoring have been 

used to better inform diagnosis, intervention selection, and recently also for early predicting 

transitions in patients affect state (Kroeze et al., 2017; Smit et al., 2019). Long-term monitoring 

of HR(V) could potentially add to ESM’s potential in clinic practice, as it might supplement a 

patients momentary affect data with physiological data. 

The current study is performed within the scope of the TRANS-ID (TRANSitions In 

Depression, www.transid.nl) project, which aims to discover personalized signals that may 

indicate critical transitions in psychological and physiological symptoms. In TRANS-ID we 

investigate within single individuals which early warning signals precede depressive symptom 

change and thereby examine whether psychological symptoms behave according to the 

principles of complex dynamical systems (Scheffer, 2010). To gain insight into this, we use 

ESM to capture the micro-level changes of symptoms, emotions, behaviours and daily context 

over time (Kramer et al., 2014). Moreover, future TRANS-ID studies are planned to investigate 

whether monitoring patients’ HR(V) data can support the study of dynamic processes, such as 

transitions from a healthy to a clinically affected state in patients. Such combined time-series 
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data collection is required for studies that aim to investigate the use of physiological 

measurements for predicting transitions in patients’ affect state. We previously found support 

that ESM data can be used to calculate early warning signals to predict transitions in patients’ 

affect state (Wichers & Groot. 2016; Smit, Snippe, & Wichers, 2019), and aim to investigate 

in future research the usefulness of HR(V) monitoring for predicting transitions in patients’ 

affect state. As long-term continuous wearing of ECG-electrodes is not feasible (e.g. because 

of skin irritation), and invasive heart rate measurements are not possible in non-clinical 

settings, the second best option would be an intensive repeated measurements design. HR(V) 

is well known to fluctuate with changing posture and activities in ecological real-life 

monitoring designs (Riese et al., 2004; Vrijkotte, van Doornen, & de Geus, 2000). To account 

for this a highly controlled procedures for data collection in the laboratory, as well as in real-

life, was used in the current study. 

To test the potential of HR(V) time-series data, a specific study design and a HR(V) 

monitor suitable for long-term (i.e. four months) monitoring is required. Based on literature 

search,  pilots that include analysis of the raw time-series data with the potential selected HR 

monitors, and our own expertise, we set the following criteria a monitor should fulfil; (i) 

feasibility of four months HR(V) monitoring, which requires participants to initialize and 

operate the monitors themselves on a smartphone; (ii) wireless monitoring, as multiple long 

wires attached to the electrodes can be accidentally pulled and detached from the monitor 

interrupting data collection (Shin et al., 2005; Winokur et al., 2013); (iii) sufficient battery and 

memory capacity to support long-term assessment; (iv) the ability to upload data to a protected 

server; (v) good validity and reproducibility of HR(V) measurements and; (vi) access to the 

raw data. 

There are various types of heart rate monitors, for example in cardiology heart rate is 

typically monitored with an electrocardiogram (ECG) Holter system (Kennedy, 2013). Holter 
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monitors allow for 24 to 48 hours of continuous measurements with high accuracy. Such a 

higher degree of accuracy comes at a price though, as the large number of ECG spot-electrodes 

and wires increases the measurement burden. For research purposes, heart rate monitors with 

substantial less spot-electrodes and wires were successfully developed for robust continuous 

24-48 hours ECG measurements (de Geus et al., 1995; Wegner et al., 2020). However, there

are still a number of issues hampering long-term measurements (weeks/months) such as; 

limited data storage and battery capacity, wires between the monitor and the electrodes, skin 

irritation due to wearing ECG electrodes, and monitor costs.  

Recently many innovative heart rate monitors were released. One could contend that 

there are many alternative consumer-grade monitors, including the well-known Fitbit, Polar 

RS400, or Apple Watch. Indeed, studies have shown agreeable accuracy of such monitors 

when compared to chest-strapped ECG monitors (Stahl et al., 2016). In other studies, 

however, wrist-worn monitors were found to provide non-consistent accuracy during motion 

when compared to a chest strap-based ECG monitor (Wang et al., 2017). In an effort to 

optimize accuracy, combined with the aforementioned essential criteria, such as access to raw 

data, we selected the Cortrium C3 ECG monitor (cortrium.com) and the Ithlete 

photoplethysmography (PPG) finger sensor (myithlete.com). Both ECG and PPG assess 

interbeat interval (IBI) time-series data from which HRV measures can be calculated. 

The Cortrium is a wireless 3-lead ECG monitor, which is attached to the chest with 

three spot-electrodes. The signal is sent via a Bluetooth connection to the user’s smartphone 

and data are saved in real-time. From the smartphone, data can be transferred to any protected 

server worldwide solving potential data storage issues. The Cortrium also has an internal 

memory. Such multiple data storage sites can act as a buffer against potential data loss. The 

renewed interest in heart rate monitoring has also reinvigorated interest in optically based 

methods, such as PPG. With PPG, blood volume changes are detected by illuminating tissue 
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and measuring changes in light absorption, from which the R-peaks are deduced. Especially 

for long-term monitoring the PPG method offers the advantage of being ECG spot-electrode 

free preventing skin irritation which can hamper feasibility and increase non-compliance. 

Earlier studies established substantial agreement (correlation coefficients between 0.81 and 

0.99, and < 3% error rate) between PPG and ECG measures under controlled laboratory 

conditions (Lu et al., 2009; Teng & Zhang, 2003). The Ithlete PPG finger sensor is also 

controlled by a smartphone application, and offers data storage options via Bluetooth 

connection and on protected servers. The Ithlete finger sensor uses an infrared light emitting 

diode as a light source. Investigations into possible negative effects of body mass index 

(BMI) on accuracy of HR assessment with wrist-worn PPG devices have obtained evidence 

both for and against such a negative effect. We do not expect BMI to considerably hinder HR 

accuracy in our study with the Ithlete, as it measures at the tip of the finger, a location which 

was found to be most sensitive to blood volume fluctuations (Nardelli et al., 2020).    

While the Cortrium and the Ithlete offer interesting features that can facilitate longer 

(e.g. months) intensive monitoring, their feasibility, validity, and test-retest reproducibility 

has not been established yet. Therefore, in the current study we aim to investigate the 

feasibility of these monitors during laboratory sessions and long-term ambulatory monitoring. 

Second, the validity of the wireless Cortrium and Ithlete monitors on HR and HRV 

measurements are tested against a standard wired ECG reference monitor under standardized 

laboratory conditions. Thirdly, test-retest reproducibility of HR and HRV assessed with the 

wireless monitors is tested under laboratory conditions over a period of two weeks. 
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Materials and methods 

Participants 

For this study, we recruited 64 participants (75% female, mean age = 26 years) from 

the University Medical Center Groningen (UMCG) and the University of Groningen, through 

recruitment flyers (see: osf.io/yanqd/). Participants were eligible to participate when the 

following criteria were met: being (i) 18 years or older, (ii) able to follow the study 

procedures, (iii) sufficiently proficient in Dutch to fill-out the ESM items and operate a 

smartphone, (iv) giving written informed consent, and (v) not suffering from cardiovascular 

diseases, diabetes mellitus, anemia, or using cardio-active medication. Participants received a 

€25 gift card when completing at least 80% of the measurements and a summary report of 

their personal data. 

Of the original 64 recruited participants, 51 did successfully complete the study. One 

participant was excluded due to use of cardioactive medication, three other participants did 

initially agree with study participation but did not to show-up for the first appointment. 

Lastly, nine participants dropped out during the course of the study. The reasons for dropout 

were: skin irritation cause by the ECG electrodes (one time), fear caused by observing own 

heart rate (one time), time constrains (two times), not reacting any more to communication 

efforts (two times), and no reported reason (three times). The study protocol was submitted to 

the ethical review board of the UMCG, who confirmed that formal assessment was not 

required. The study is registered in the UMCG research register (no. 20160039). 

Monitor specifications 

As reference the VU-AMS monitor (www.vu-ams.nl) was used as its validity and 

reproducibility of measuring cardiovascular indices have been established and are on par with 

traditional non-ambulatory ECG monitors used in laboratories (de Geus et al., 1995; 
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Goedhart et al., 2007; Willemsen et al., 1996). Recorded signals were ECG (VU-AMS, 

Cortrium) or PPG (Ithlete). Sample rate was fixed by design at 250 Hz for both the Cortrium 

and Ithlete devices, and set to 250 Hz for the VU-AMS system to facilitate device 

comparison, although having a sampling frequency higher than 250 Hz would provide higher 

resolution data, as described in detail elsewhere, this sample rate is sufficient for the aims of 

the current study (Greaves-Lord et al., 2010), as the contribution of the rounding error at 250 

Hz was found to be small (i.e., error variance = 1.3 ms2, LF contribution = 0.4 ms2, HF 

contribution = 1.4 ms2). From the ECG and PPG signals R-peaks were triggered (details 

below) to obtain inter-beat intervals (IBI, in ms) between two successive heartbeats. HRV is 

calculated as its primary time-domain measure, the root mean square of successive 

differences (RMSSD, in ms) between two heartbeats (Malik et al., 1996). 

 

Study design 

A flowchart of the study is shown in Figure 1. Data were collected during two 

laboratory sessions and two weeks of ambulatory measurements. The laboratory 

measurements were designed to assess the cross-instrument and test-retest reproducibility of 

the monitors in a controlled laboratory setting. The ambulatory assessments were designed to 

assess monitor feasibility during ecological valid ambulatory settings. These ambulatory 

assessments took place in an ESM design; meaning that participants receive an ESM 

questionnaire five times a day at 3-hour intervals, after which they will conduct ECG/PPG 

measurements. The questionnaires were sent via text message, while a reminder text was sent 

after ten minutes if participants had not yet responded. Participants had to complete the ESM 

questionnaire within half an hour. Filling out the questionnaire took about two minutes. An 

overview of the included ESM items translated into English is available online (see: 

osf.io/e8vnh/).  
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Laboratory: During the first laboratory session participants started with a 15-minute 

intake, which included amongst others, questions about medication use, alcohol use, tobacco 

use, and contraception use (see osf.io/yanqd/ for more details). Next, the participant was 

attached to the Cortrium, Ithlete, and VU-AMS. Participants wore all three monitors 

simultaneously during the laboratory sessions. The first laboratory session took 

approximately 90 minutes and involved six standardized physical and mental tasks (see 

Figure 2). After the 14 days of ambulatory measurements, participants returned for the second 

laboratory session, which involved the same laboratory tasks and an additional structured 

evaluation interview. 

Ambulatory setting: After the first laboratory session, participants continued with 14 

days of monitoring themselves with the Cortrium and Ithlete during their normal daily life. 

Participants wore the Ithlete and Cortrium monitors simultaneously. Participants measured 

themselves five times a day by filling-out an ESM diary (two minutes) and subsequently 

conduct the ECG/PPG measurements (five minutes). ESM was used as a reminder for the 

heart rate measurement and as a timer for the acclimatization phase. ESM data were not used 

in the current study.  
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Figure 1: Flowchart of the study. Note: * A precise specification of these various dropout reasons is given in the 

method section. ** The second laboratory session included two more participants than the 49 that finished the 

second ambulatory week is because although they dropped out of the ambulatory assessment part they agreed to 

participate in the second laboratory session. 

Figure 2: Visualization of the study design. Upper part: The study involved two laboratory sessions and 

ambulatory measurements. Lower part: Enlargement of the laboratory sessions. The two blocks labelled “Acc.” 

indicate two minutes of acclimatization. The other blocks indicate the six laboratory tasks: supine, standing, 

sitting, paced breathing, a mental stress task, and paced walking.  
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Procedure 

Laboratory: 

The lab sessions involved tasks in the following preset order: acclimatization in 

supine position (two minutes), rest in supine position with eyes closed (five minutes); 

standing position with eyes open (five minutes); acclimatization in sitting posture (two  

minutes); rest in sitting posture (five minutes); paced breathing task in sitting position (five 

minutes); mental stress task (five minutes); and paced walking (five minutes). 

Acclimatization after posture changes were used to obtain stationary ECG signals. For the 

paced breathing task visual stimuli on screen guided participants to pace their breathing with 

a 0.25 Hz frequency. The mental stress task is a challenging Stroop task. The Stroop task is 

known to reliably elicit cardiac responses (Eliasson et al., 1983; Freyschuss et al., 1988). To 

increase mental stress the research assistant delivered critical feedback to the participant such 

as “That is not good enough”. Paced walking was protocolled as walking with the research 

assistant in a constant normal walking speed through a preset walking route. After the second 

laboratory session participants participated in an in-house developed evaluation interview. 

The interview included 52 questions and took approximately 45 minutes. The difference with 

the first interview (intake) were the additional evaluation questions about feasibility, ease-of-

use, and burdensomeness of the wireless monitors. Participants were also asked about the 

procedural fidelity, such as reasons for missing heart rate measurements during the 14-day 

ambulatory setting. An overview of the items used to assess feasibility, ease-of-use, and 

burdensomeness is available online (see: osf.io/4nuwg/).  

Ambulatory setting: At the end of the laboratory session, the research assistant 

instructed participants to fill-out the ESM diary within 30 minutes when prompted by a text 

message on their smartphone in sitting posture. Participants were instructed to remain seated 

for two minutes to further acclimatize to ascertaining signal stationarity and preventing 
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changes in posture and motion artefacts. Then the ECG/PPG measurements were started in 

sitting posture while breathing spontaneously and refraining from talking. Assistance from a 

research assistant was available for participants during the full study period.   

Data pre-processing 

For labelling the VU-AMS data collected during the laboratory sessions, the VU-

DAMS software (version 4.3) was used. Each task in the lab session and each assessment in 

the ambulatory situation was given a label. Labels indicate the start and end of a block of time-

series data entered into the pre-processing procedure prior statistical analyses, and reported in 

the result section. Raw IBI time-series data were pre-processed in R-peak detection software. 

Data pre-processing steps included converting files, checking file integrity, and correcting for 

(motion) artefacts. Conceptually there were no differences between preprocessing in either the 

in-house developed Precar or the Drosan software, although the implementation logically 

differed due to inherent differences between raw ECG and PPG time-series data. Drosan 

version 2.52, (Zhang et al., 2019) was used for pre-processing the Ithlete data, and Precar 

version 3.83 (Greaves-Lord et al., 2010) for pre-processing the Cortrium and VU-AMS data. 

The CARSPAN program is an in-house developed software package for processing and 

analyzing IBI time-series (Mulder, van Roon, & Schweizer, 1995).  

Data pre-processing involved checking the integrity of the time-series data. Missing 

data were interpolated up to a maximum of 10 sec. but in not more than 10% of the total block 

duration. Otherwise, time-series data in a block was set to missing due to poor data quality. 

Major reasons for unsatisfactory data quality were poor connection between spot-electrodes 

and the participants’ skin, and motion artefacts. Both ECG and PPG methods are known to be 

vulnerable for such motion artefacts (Thakor & Zhu, 1991; Trivedi et al., 1997). Data analysts 

were first trained by analysing ten example files under supervision of an expert cardiology 
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analyst. Data analysts were allowed to work on the real time-series data files after sufficiently 

high intraclass correlation coefficient (ICC) values (ICC > 0.95) between the files processed 

by the analyst and those processed by the expert cardiology analyst were attained.  

It was checked whether the data were not too noisy for analysis, whether the R-squared 

values were at least 0.30, and whether vcIBI values were above 20%. 1.03% of the Cortrium 

files and 11.00% of the Ithlete files were found to exceed these criteria. When such 

physiological implausible values were detected, these were followed-up up with a check in the 

raw data to make sure no R-peaks or artefacts were missed during data pre-processing.  

Statistical analysis 

All statistical analysis and plotting of the data were performed in the statistical 

programming language R (R Core Team, 2017). Prior analysis, data distributions were checked 

for dispersion and skewness by visually examining QQ-plots, density plots, and skewness-

kurtosis plots (Cullen & Frey, 1999), and testing for normality with a Shapiro-Wilk test 

(Shapiro & Wilk, 1965). RMSSD values were natural log transformed to conform to 

assumptions of linear analyses (Ellis et al., 2008). 

First, we described feasibility characteristics of the monitors, such as amount of data 

collected with each monitor. Descriptive statistics of the evaluation interview were calculated. 

Second, cross-instrument validity was assessed by comparing both the Cortrium and the Ithlete 

to the VU-AMS during the laboratory tasks. The variables of interest are mean IBI and 

ln(RMSSD). Intraclass correlation coefficients (ICC’s) were calculated; values closer to one 

indicate closer adherence to the reference. ICC values were interpreted as follows: <0.40 as 

poor, between 0.40 and 0.59 as fair, between 0.60 and 0.74 as good, and between 0.75 and 1.00 

as excellent (Cicchetti, 1994). Third, the test-retest reproducibility was tested. With paired 
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student’s t-tests changes in mean IBI and ln(RMSSD) values obtained in the first and second 

laboratory sessions were tested. Absolute reproducibility, which shows the predicted trial-to-

trial noise within participants, was assessed by calculating the standard error of measurement 

(SEM), also known as the within-subject standard deviation. Furthermore, the coefficient of 

variation (CV, in %) was calculated as an indication of reproducibility: lower CV values 

indicate higher reproducibility (lellamo et al., 1996). For instance, a CV of 20% indicates that 

around 2/3 of test-retest differences can be found within 20% of the mean score (Atkinson & 

Nevill, 1998). Missing data were handled through list-wise deletion for the test-retest and cross-

instrument parts separately. Bland-Altman plots (Bland & Altman, 1999) were used to 

visualize agreement between values obtained with the wireless monitors and the VU-AMS. In 

these plots, the differences of each couple of repeated measurements are plotted against the 

average of these two measurements. Third, the test-retest reproducibility was tested by 

comparing the measurements of the Cortrium and the Ithlete during the first laboratory session 

with the corresponding measurements during the second laboratory session. Additionally, a 

Welch t-test was performed on mean IBI and ln(RMSSD) values of the first and second 

laboratory sessions for each monitor as Bartlett tests indicated unequal variances. 
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Results 

Descriptive statistics 

Descriptive statistics for HR and HRV are given in Table 1 (see for a transposed version 

of Table 1, which allows for easy monitor comparison, https://osf.io/undy2/download). Visual 

indicators (i.e., QQ-plots, density plots, and skewness-kurtosis plots) and Shapiro-Wilk tests 

indicated that data were not normally distributed. Therefore, data were natural log-transformed 

prior statistical analysis. Inspection of the residuals versus fitted plots indicated that the 

assumption of equal variances was not violated.  

TABLE 1 
Descriptives of IBI and log-transformed RMSSD assessed during the first and second 
laboratory measurements showing all tested monitors and laboratory tasks. Means (SD) and 
[range] are given. 

Monitor Task and Lab 
session No. 

IBI (in ms) ln(RMSSD) (in ln(ms)) 

Cortrium 

Supine 
1st Lab (n=39) 

987.61 (180.40) 
[657.18 - 1429.02] 

4.21 (0.68) 
[2.49 - 5.41] 

Supine 
2nd Lab (n=37) 

985.47 (167.11) 
[726.22 - 1413.60] 

4.26 (0.72) 
[2.79 - 5.43] 

Standing  
1st Lab (n=38) 

765.54 (134.66)  
[520.08 – 1113.66] 

3.31 (0.54) 
[2.26 – 4.61] 

Standing  
2nd Lab (n=37) 

746.27 (119.29)  
[538.96 – 1176.21] 

3.27 (0.60) 
[2.21 - 4.50] 

Sitting  
1st Lab (n=39) 

895.38 (147.80)  
[589.67 – 1242.34] 

3.81 (0.64) 
[2.20 – 4.95] 

Sitting  
2nd Lab (n=37) 

876.96 (134.33)  
[584.43 – 1255.89] 

3.78 (0.62) 
[2.05 - 4.99] 

Breathing 
1st Lab (n=39) 

873.70 (147.02)  
[555.63 – 1197.37] 

3.93 (0.66) 
[1.92 – 5.16] 

Breathing 
2nd Lab (n=37) 

845.61 (138.61)  
[570.91 – 1221.98] 

3.85 (0.72) 
[2.08 – 5.39] 

Mental Stress 
1st Lab (n=39) 

882.86 (149.59)  
[529.28 – 1260.23] 

3.91 (0.60) 
[1.92 - 5.03] 

Mental Stress 
2nd Lab (n=37) 

873.68 (129.91)  
[511.51 – 1183.36] 

3.80 (0.68) 
[1.50 - 4.98] 

Walking 
1st Lab (n=37) 

694.08 (91.60)  
[514.50 – 907.48] 

3.25 (0.62) 
[1.46 - 4.64] 

Walking 
2nd Lab (n=36) 

696.16 (82.20)  
[526.18 – 882.94] 

3.23 (0.55) 
[1.96 – 4.33] 

Supine  1006.91 (195.78) 4.37 (0.61) 
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Ithlete 

1st Lab (n=23) [738.68 – 1433.23] [2.86 - 5.37] 
Supine  
2nd Lab (n=28) 

1001.53 (159.51)  
[796.42 - 1414.95] 

4.41 (0.63) 
[2.78 – 5.40] 

Standing  
1st Lab (n=24) 

769.59 (149.77)  
[597.12 – 1245.97] 

3.37 (0.48) 
[2.73 – 4.49] 

Standing  
2nd Lab (n=28) 

740.24 (106.11)  
[601.94 – 1163.15] 

3.39 (0.48) 
[2.51 – 4.49] 

Sitting  
1st Lab (n=23) 

898.00 (150.12)  
[720.13 – 1305.79] 

3.91 (0.49) 
[2.87 – 4.67] 

Sitting  
2nd Lab (n=28) 

882.26 (104.52)  
[722.15 – 1199.70] 

3.92 (0.51) 
[2.99 – 5.15] 

Breathing 
1st Lab (n=24) 

879.51 (147.80)  
[660.31 – 1226.03] 

4.05 (0.54) 
[2.99 - 5.18] 

Breathing 
2nd Lab (n=27) 

851.56 (112.09)  
[660.21 – 1219.78] 

3.94 (0.58) 
[2.28 - 5.04] 

Mental Stress 
1st Lab (n=23) 

897.00 (154.40)  
[676.07 - 1269.69] 

3.97 (0.46) 
[3.00 – 4.83] 

Mental Stress 
2nd Lab (n=27) 

888.90 (108.80)  
[730.72 – 1185.84] 

3.93 (0.53) 
[2.83 – 4.97] 

Walking 
1st Lab (n=6) 

706.33 (67.21)  
[604.43 – 814.47] 

4.49 (0.52) 
[3.76 – 5.16] 

Walking 
2nd Lab (n=5) 

679.22 (119.87)  
[539.61 – 859.38] 

4.39 (0.48) 
[3.82 - 5.05] 

VU-AMS 

Supine  
1st Lab (n=45) 

991.00 (175.14)  
[659.74 – 1432.45] 

4.22 (0.64) 
[2.51 – 5.39] 

Supine  
2nd Lab (n=45) 

1004.81 (173.88)  
[726.98 – 1431.02] 

4.30 (0.71) 
[2.59 – 5.42] 

Standing  
1st Lab (n=45) 

761.78 (145.27)  
[521.67 – 1251.65] 

3.22 (0.53) 
[2.27 – 4.46] 

Standing  
2nd Lab (n=45) 

750.28 (138.38)  
[541.23 – 1351.38] 

3.22 (0.60) 
[1.89 – 4.60] 

Sitting  
1st Lab (n=45) 

896.43 (151.53)  
[590.93 – 1301.51] 

3.79 (0.61) 
[2.20 – 4.94] 

Sitting  
2nd Lab (n=45) 

889.33 (147.44)  
[585.86 – 1437.04] 

3.80 (0.59) 
[2.05 - 4.96] 

Breathing 
1st Lab (n=45) 

874.72 (146.82)  
[557.01 – 1220.17] 

3.91 (0.62) 
[1.89 – 5.15] 

Breathing 
2nd Lab (n=44) 

851.37 (147.68)  
[572.56 – 1344.88] 

3.83 (0.69) 
[2.09 – 5.38] 

Mental Stress 
1st Lab (n=45) 

883.39 (146.10)  
[530.77 – 1271.88] 

3.84 (0.54) 
[1.90 – 4.83] 

Mental Stress 
2nd Lab (n=44) 

887.37 (142.97)  
[512.94 – 1371.76] 

3.80 (0.64) 
[1.52 – 4.99] 

Walking 
1st Lab (n=45) 

704.34 (97.58)  
[516.18 – 985.97] 

3.09 (0.54) 
[1.47 - 4.70] 

Walking 
2nd Lab (n=43) 

697.70 (80.62)  
[527.27 – 945.73] 

3.18 (0.51) 
[1.88 – 4.18] 

Note: IBI: interbeat interval, in ms; ln RMSSD: natural logarithm of the root mean square of 
successive differences between normal heartbeats, in ln(ms). 
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Feasibility 

 Laboratory: Of the 51 participants who completed the study, 35 (69%) were able to 

obtain complete data with all three monitors in both laboratory sessions. During laboratory 

sessions technical difficulties leading to data loss was applicable for the: VU-AMS monitor in 

three participants (6%), Cortrium for six participants (12%), and the Ithlete in 15 participants 

(29%). In total, 45 participants (88%) completed both laboratory sessions with: the Cortrium 

(46 hours and 18 minutes of data), 36 participants (71%) with the Ithlete (29 hours and 40 

minutes), and 48 participants (94%) with the VU-AMS (55 hours and 36 minutes).  

Ambulatory setting: Two of the 60 participants who started with the ambulatory 

measurements stopped collecting data but agreed to participate in the second laboratory 

session. Nine participants dropped out completely during the ambulatory part of the study. 

The remaining 49 participants could maximally obtain 3430 measurements (49 participants * 

14 days * 5 measurements). These 49 participants collected 2519 measurements (213 hours 

and 17 minutes of data, 73,44%) with the Cortrium and 2182 measurements (176 hours and 

20 minutes of data, 63,61%) with the Ithlete. Three participants experienced technical 

difficulties (one participant with the Cortrium, two with the Ithlete) leading to a loss of more 

than 50% of their data.  

Evaluation: All 49 participants reported to have missed at least one measurement due 

to non-adherence to the instructions. Participants specified seven reasons for missing 

measurements: (i) work (25 times), (ii) spare time activities (22 times), (iii) forgot monitor 

and/or measurements (16 times), (iv) technical difficulties with monitor(s) (10 times; four out 

of 49 participants (6.25%) with the Cortrium, six out of 49 participants (9.38%) with the 

Ithlete), (v) travelling (9 times), (vi) technical difficulties with smartphone or connection (five 

times), and (vii) skin irritation (four times). Participants reported four reasons to continue with 
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the measurements: (i) having agreed to participate in the study (23 times), (ii) wanting to 

support research (16 times), (iii) being interested in the study results (12 times), and (iv) being 

supportive to the researchers (3 times).  

The Cortrium was given average scores of 66.78 (SD = 20.00) for user-friendliness, 

66.39 (SD = 22.55) for social acceptability, and 51.65 (SD = 27.45) for burdensomeness. The 

Ithlete was given average scores of 74.29 (SD = 23.16) for user-friendliness, 69.65 (SD = 

23.90) for social acceptability, and 38.51 (SD = 25.72) for burdensomeness. The Welch two 

sample t-test indicated that using the Ithlete was evaluated as less burdensome than the 

Cortrium (t(100) = 2.49, p = 0.01), and that the monitors did not differ in user-friendliness and 

social acceptability. 

Cross-instrument validation 

Cross-instrument performance of the Cortrium and the Ithlete against the VU-AMS was 

tested. Result obtained with the Cortrium are comparable to the VU-AMS (details given in 

Table 2). Best agreement was found for IBI during the supine task of the first laboratory session 

(ICC = 1.00, 95% CI = 1.00 – 1.00, SEM = 1.11 ms). Reproducibility, expressed as the CV 

was 0.11%, indicated that about 2/3 of the differences are within 0.11% of the mean IBI values. 

Lowest agreement was found for ln(RMSSD) during the walking task of the first laboratory 

session (ICC = 0.53, 95% CI = 0.23 – 0.73, SEM = 10.81 ln(ms), CV = 35.20%). However, 

even in this latter case the agreement based on the ICC values should still be interpreted as fair.  

Results obtained with the Ithlete during most tasks were are also comparable to the VU-

AMS (details given in Table 3). Best agreement was found for the IBI during the mental stress 

task of the second laboratory session (ICC = 1.00, 95% CI = 1.00 – 1.00, SEM = 1.39 ms). 

Reproducibility expressed as the CV was 0.15%: indicating that about 2/3 of the differences are 
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within 0.15% of the mean IBI values. However, during the walking tasks of both laboratory 

sessions the ln(RMSSD) values calculated from the Ithlete data did deviate substantially from 

those obtained by the VU-AMS. Lowest agreement was found during the first walking task 

(ICC = -0.08, 95% CI = -0.10 - 0.78, SEM = 22.93 ln(ms), CV = 32.12%). It should be noted, 

however, that in both walking tasks the sample sizes were very small (n = 6, and 5, respectively) 

as motion artefacts resulted in missing data.  

In sum, in the walking tasks, the Cortrium outperformed the Ithlete. However, under 

circumstances without motion artefacts, differences between the Cortrium and the Ithlete were 

negligible. This is visualized in the Bland-Altman plots given in Figure 3 for IBI data collected 

during the first laboratory session with the Cortrium and VU-AMS, and the supplementary 

materials Figures S1 to S7 for the other variables and sessions. Although the absolute mean 

differences are small, the Bland-Altman plots showed that the Cortrium tended to 

underestimated IBI (range: between -2.6 and -0.4 ms). The Ithlete tended to overestimated IBI 

(range: between -1.3 and 10.7 ms) Again, with small absolute mean differences, both monitors 

overestimated ln(RMSSD), with values ranging between -0.004 and 0.198 for the Cortrium and 

values ranging between 0.055 and 1.377 for the Ithlete.  
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Figure 3. Bland-Altman plots of the Inter-Beat Interval data collected during the first laboratory session with 

the Cortrium versus the VU-AMS device (details on the laboratory session are described in the Method section 

and depicted in Figure 2). The blue dotted lines represent the mean difference between the Inter-Beat Interval 

values, while the red dotted lines represent the limits of agreement from negative 1.96 until positive 1.96 times 

the standard deviation of the differences. On the x-axis the Inter-Beat Interval mean values are given while the 

y-axis shows the differences between Inter-Beat Interval values obtained from the two devices."
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TABLE 2 
Cross-instrument reference method for all laboratory tasks during the first and second 
laboratory performance of the Cortrium when compared to the VU-AMS session. 

Lab 
session 

Task IBI (in ms) ln(RMSSD) (in ln(ms)) 

1 

Supine 
(n = 38) 

ICC: 1.00 0.91 
95% CI: 1.00 – 1.00 0.84 – 0.95 

SEM: 1.11 14.94 
CV: 0.11 17.12 

LOA: [-3.88 – 2.26] [-41.21 – 41.62] 
Standing 
(n = 37) 

ICC: 1.00 0.89 
95% CI: 1.00 – 1.00 0.80 – 0.94 

SEM: 1.13 5.71 
CV: 0.14 17.70 

LOA: [-3.64 – 2.63] [-13.12 – 18.52] 
Sitting 
(n = 38) 

ICC: 1.00 1.00 
95% CI: 1.00 – 1.00 1.00 – 1.00 

SEM: 1.22 0.65 
CV: 0.13 1.14 

LOA: [-3.93 – 2.81] [-1.42 – 2.17] 
Breathing 
(n = 38) 

ICC: 1.00 0.98 
95% CI: 1.00 – 1.00 0.96 – 0.99 

SEM: 1.21 5.77 
CV: 0.13 9.02 

LOA: [-3.97 – 2.73] [-13.66 – 18.32] 
Mental 
Stress 
(n = 38) 

ICC: 1.00 0.81 
95% CI: 1.00 – 1.00 0.64 – 0.90 

SEM: 2.18 13.41 
CV: 0.23 22.45 

LOA: [-7.22 – 4.84] [-29.91 – 44.43] 
Walking 
(n = 36) 

ICC: 1.00 0.53 
95% CI: 1.00 – 1.00 0.23 – 0.73 

SEM: 1.49 10.81 
CV: 0.20 35.20 

LOA: [-5.65 – 2.60] [-22.68 – 37.24] 
Supine 
(n = 36) 

ICC: 1.00 0.94 
95% CI: 1.00 – 1.00 0.89 – 0.97 

SEM: 1.54 14.20 
CV: 0.15 14.95 

LOA: [-5.42 – 3.11] [-41.47 – 37.22] 
Standing 
(n = 36) 

ICC: 1.00 0.99 
95% CI: 1.00 – 1.00 0.98 – 1.00 

SEM: 1.37 1.33 
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2 

CV: 0.17 4.25 
LOA: [-4.51 – 3.10] [-2.73 – 4.67] 

Sitting 
(n = 35) 

ICC: 1.00 1.00 
95% CI: 1.00 – 1.00 0.99 – 1.00 

SEM: 1.42 1.65 
CV: 0.15 3.13 

LOA: [-4.38 – 3.51] [-4.13 – 4.99] 
Breathing 
(n = 36) 

ICC: 1.00 0.98 
95% CI: 1.00 – 1.00 0.97 – 0.99 

SEM: 1.92 5.32 
CV: 0.22 8.89 

LOA: [-5.76 – 4.86] [-12.87 – 16.64] 
Mental 
Stress 
(n = 36) 

ICC: 1.00 1.00 
95% CI: 1.00 – 1.00 0.99 – 1.00 

SEM: 1.41 2.20 
CV: 0.15 3.92 

LOA: [-4.83 – 2.97] [-5.21 – 7.00] 
Walking 
(n = 34) 

ICC: 1.00 0.88 
95% CI: 1.00 – 1.00 0.74 – 0.94 

SEM: 2.27 4.03 
CV: 0.31 13.99 

LOA: [-8.90 – 3.71] [-8.39 – 13.95] 
Note: IBI: interbeat interval, in ms; ln RMSSD: natural logarithm of the root mean square of 
successive differences between normal heartbeats, in ln(ms); ICC: intraclass correlation 
coefficient; 95% CI: 95% confidence interval of ICC; SEM: standard error of measurement 
in ms for IBI mean, ln(ms) for ln(RMSSD); CV: coefficient of variation in %; LOA: lines of 
agreement.  
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TABLE 3 
Cross-instrument performance of the Ithlete when compared to the VU-AMS reference 
method for all laboratory tasks during the first and second laboratory session. 

Lab 
session 

Task IBI (in ms) ln(RMSSD) (in ln(ms)) 

1 

Supine 
(n = 23) 

ICC: 1.00 0.96 
95% CI: 1.00 – 1.00 0.89 – 0.99 

SEM: 5.01 8.42 
CV: 0.47 8.81 

LOA: [-15.22 – 12.54] [-16.69 – 29.99] 
Standing 
(n = 24) 

ICC: 1.00 0.98 
95% CI: 1.00 – 1.00 0.45 – 0.99 

SEM: 1.79 1.61 
CV: 0.22 4.77 

LOA: [-4.47 – 5.46] [-0.91 – 8.00] 
Sitting 
(n = 23) 

ICC: 1.00 0.94 
95% CI: 0.99 – 1.00 0.71 – 0.98 

SEM: 10.04 4.80 
CV: 1.06 8.42 

LOA: [-24.76 – 30.89] [-7.71 – 18.88] 
Breathing 
(n = 24) 

ICC: 1.00 0.98 
95% CI: 1.00 – 1.00 0.48 – 1.00 

SEM: 5.03 2.28 
CV: 0.54 3.35 

LOA: [-14.22 – 13.67] [-0.75 – 11.92] 
Mental 
Stress 
(n = 23) 

ICC: 1.00 0.98 
95% CI: 1.00 – 1.00 0.95 – 0.99 

SEM: 6.88 3.13 
CV: 0.72 5.14 

LOA: [-16.87 – 21.29] [-6.50 – 10.88] 
Walking 
(n = 6) 

ICC: 0.97 -0.08*
95% CI: 0.78 – 1.00 -0.25 – 0.47

SEM: 10.28 41.17
CV: 1.38 51.82 

LOA: [-17.75 – 39.22] [-39.91 – 188.32] 
Supine 
(n = 27) 

ICC: 1.00 0.98 
95% CI: 1.00 – 1.00 0.94 – 0.99 

SEM: 3.58 8.04 
CV: 0.34 7.77 

LOA: [-10.21 – 9.64] [-17.22 – 27.38] 
Standing 
(n = 27) 

ICC: 1.00 0.79 
95% CI: 1.00 – 1.00 0.44 – 0.92 
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2 

SEM: 3.24 6.78 
CV: 0.41 20.81 

LOA: [-9.08 – 8.91] [-11.98 – 25.63] 
Sitting 
(n = 27) 

ICC: 0.88 0.63 
95% CI: 0.76 – 0.94 0.34 – 0.81 

SEM: 35.98 18.57 
CV: 3.83 31.54 

LOA: [-95309 – 104.40] [-42.23 – 60.71] 
Breathing 
(n = 26) 

ICC: 1.00 0.84 
95% CI: 1.00 – 1.00 0.62 – 0.93 

SEM: 2.87 11.31 
CV: 0.32 18.54 

LOA: [-8.26 – 7.68] [-22.56 - 40.14] 
Mental 
Stress 
(n = 26) 

ICC: 1.00 0.82 
95% CI: 1.00 – 1.00 0.65 – 0.92 

SEM: 1.39 13.24 
CV: 0.15 21.89 

LOA: [-4.43 – 3.29] [-30.63 – 42.78] 
Walking 
(n = 5) 

ICC: 0.99 0.20* 
95% CI: 0.70 – 1.00 -0.1 – 0.78

SEM: 6.21 22.93
CV: 0.87 32.12 

LOA: [-4.44 – 29.98] [-1.42 – 125.69] 
Notes: IBI: interbeat interval, in ms; ln RMSSD: natural logarithm of the root mean square 
of successive differences between normal heartbeats, in ln(ms). ICC: intraclass correlation 
coefficient; 95% CI: 95% confidence interval of ICC; SEM: standard error of measurement 
in ms for IBI mean, ln(ms) for ln(RMSSD); CV: coefficient of variation in %; LOA: lines of 
agreement. *: ICC <= 0.40 indicating poor reproducibility between measurements from the 
monitor and the reference method (see method section for more details). 
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Reproducibility 

Data assessed during the first and second laboratory session were not different for the 

Cortrium, the Ithlete, and the VU-AMS (see Table 4 for test-retest statistics). For both the VU-

AMS and the Cortrium, we did not find any differences in IBI and ln(RMSSD) during any of 

the tasks between the first and the second laboratory measurement. For the VU-AMS good to 

excellent reliabilities were found (ICC range = 0.64 - 0.88). For the Cortrium, ICC values 

indicated fair to excellent reproducibility (ICC range = 0.53 – 0.90). For the Ithlete, no 

difference was found for data assessed in the supine task (ICC range = 0.82 – 0.86). However, 

differences were found in the standing, sitting, paced breathing, and mental stress tasks (i.e. 

lowest ICC values were obtained in the paced breathing task for ln(RMSSD) (ICC = -0.21, 

95% CI = -0.71 - 0.35, SEM = 35.21 ln(ms), CV = 54.22%). Not enough observations were 

attained in the walking task to test for any systematic change due to motion artefacts interfering 

with R-peak detection. While the Cortrium and VU-AMS did not show differences between 

the first and second laboratory sessions, the Ithlete did show differences in four tasks for IBI 

and ln(RMSSD).  
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TABLE 4 
Absolute and relative test-retest reproducibility of IBI and log-transformed RMSSD assessed 
during the first and second laboratory measurements showing all tested monitors and 
laboratory tasks. 

Monitor Task IBI (in ms) ln(RMSSD) (in ln(ms)) 

Cortrium 

Supine 
(n = 35) 

ICC: 0.86 0.82 
95% CI: 0.75 – 0.93 0.67 – 0.91 

SEM: 61.55 21.76 
CV: 5.97 25.09 

LOA: [-190.56 – 150.67] [-70.59 – 50.04] 
Standing 
(n = 34) 

ICC: 0.86 0.61 
95% CI: 0.73 – 0.93 0.35 – 0.79 

SEM: 48.14 12.60 
CV: 6.03 37.65 

LOA: [-122.71 – 144.19] [-35.16 – 34.70] 
Sitting 
(n = 35) 

ICC: 0.85 0.70 
95% CI: 0.72 – 0.92 0.48 – 0.84 

SEM: 53.85 16.38 
CV: 5.78 30.05 

LOA: [-142.61 – 155.91] [-43.91 – 46.88] 
Breathing 
(n = 35) 

ICC: 0.86 0.71 
95% CI: 0.74 – 0.93 0.49 – 0.84 

SEM: 52.83 21.94 
CV: 5.81 35.23 

LOA: [-133.04 – 159.84] [-61.67 – 59.95] 
Mental 
Stress 
(n = 35) 

ICC: 0.87 0.70 
95% CI: 0.76 – 0.93 0.47 – 0.83 

SEM: 49.61 19.37 
CV: 5.38 32.75 

LOA: [-146.39 – 128.65] [- 52.70 – 54.71] 
Walking 
(n = 32) 

ICC: 0.90 0.53 
95% CI: 0.80 – 0.95 0.23 – 0.74 

SEM: 26.54 11.95 
CV: 3.62 38.09 

LOA: [-73.84 – 73.32] [-30.18 – 36.05] 
Supine 
(n = 15) 

ICC: 0.87 0.70 
95% CI: 0.66 – 0.95 0.33 – 0.89 

SEM: 55.60 29.42 
CV: 5.49 29.97 

LOA: [-178.70 – 129.54] [-99.51 – 63.61] 
Standing 
(n = 15) 

ICC: 0.74 0.38* 
95% CI: 0.38 – 0.91 -0.17 – 0.74

SEM: 46.36 13.28
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Ithlete 

CV: 5.97 40.70 
LOA: [ - 126.72 – 130.27] [-38.20 – 35.44] 

Sitting 
(n = 14) 

ICC: 0.72 0.08* 
95% CI: 0.33 – 0.90 -0.41 – 0.56

SEM: 40.76 25.54
CV: 4.50 45.87 

LOA: [-142.12 – 83.86] [-8370 – 57.91] 
Breathing 
(n = 15) 

ICC: 0.30* -0.21*
95% CI: -0.27 – 0.70 -0.71 – 0.35

SEM: 83.88 35.51
CV: 9.31 54.22 

LOA: [-224.40 – 240.62] [-96.80 – 100.03] 
Mental 
Stress 
(n = 13) 

ICC: 0.81 0.34* 
95% CI: 0.49 – 0.94 -0.24 – 0.74

SEM: 55.68 22.96
CV: 5.99 37.98 

LOA: [-176.72 – 131.96] [-71.41 – 55.68] 
Walking 
(n = 1) 

ICC: Not enough observations Not enough observations 
95% CI: Not enough observations Not enough observations 

SEM: Not enough observations Not enough observations 
CV: Not enough observations Not enough observations 

LOA: Not enough observations Not enough observations 

VU-AMS 

Supine 
(n = 42) 

ICC: 0.86 0.80 
95% CI: 0.75 – 0.92 0.64 – 0.89 

SEM: 66.73 22.73 
CV: 6.35 25.35 

LOA: [-202.88 – 167.06] [-73.98 – 52.01] 
Standing 
(n = 42) 

ICC: 0.88 0.79 
95% CI: 0.79 – 0.93 0.64 – 0.88 

SEM: 50.34 8.98 
CV: 6.30 29.03 

LOA: [-134.67 – 144.41] [-26.61 – 23.16] 
Sitting 
(n = 41) 

ICC: 0.84 0.68 
95% CI: 0.71 – 0.91 0.47 – 0.81 

SEM: 60.70 15.49 
CV: 6.48 29.39 

LOA: [-172.07 – 164.42] [-44.10 – 41.78] 
Breathing 
(n = 40) 

ICC: 0.86 0.72 
95% CI: 0.75 – 0.92 0.54 – 0.84 

SEM: 57.39 21.23 
CV: 6.28 34.53 

LOA: [-146.44 – 171.71] [-51.28 – 59.43] 
ICC: 0.83 0.80 
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Mental 
Stress 
(n = 40) 

95% CI: 0.70 – 0.91 0.65 - 0.89 
SEM: 61.06 13.56 
CV: 6.51 24.39 

LOA: [-177.73 – 160.74] [-40.97 – 34.20] 
Walking 
(n = 39) 

ICC: 0.86 0.64 
95% CI: 0.76 – 0.93 0.41 – 0.80 

SEM: 32.00 6.50 
CV: 4.34 25.18 

LOA: [-92.96 – 84.41] [-21.14 – 14.89] 

Note: IBI: interbeat interval, in ms; ln RMSSD: natural logarithm of the root mean square of 
successive differences between normal heartbeats, in ln(ms). ICC: intraclass correlation 
coefficient; 95% CI: 95% confidence interval of ICC; SEM: standard error of measurement 
in ms for IBI mean, ln(ms) for ln(RMSSD); CV: coefficient of variation in %; LOA: lines of 
agreement. *: ICC <= 0.40 indicating poor reproducibility, and significant differences 
between measurements during the first and second laboratory sessions. Comparison of data 
of Lab 1 and Lab 2 tested with paired Student’s t-test showed all being non-significant (p > 
0.05), except the walking task of the Ithlete which did not had enough observations to 
perform the t-test. The Cortrium and VU-AMS did not show significant differences between 
the first and second laboratory sessions. The Ithlete did show differences in four tasks for IBI 
means and ln(RMSSD). 
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Discussion 

In this study we tested the cross-instrument performance of two wireless heart rate 

monitors, the Cortrium ECG C3 and the Ithlete PPG finger sensor, against a standard wired 

reference method under controlled laboratory conditions. Moreover, we studied the test-retest 

reproducibility of these monitors over a period of 14 days, while their ambulatory feasibility 

was also investigated. We found that both the Cortrium and the Ithlete offer good to excellent 

cross-instrument agreement with the reference method under five standardized laboratory 

tasks, namely: supine, standing, sitting, paced breathing, and mental stress. The Cortrium did 

also perform well in a walking task, whereas the Ithlete showed inferior performance under 

such circumstances due to its higher sensitivity to motion artefacts. Test-retest analyses showed 

that results obtained with both the VU-AMS reference and the Cortrium monitor were 

comparable. Ithlete test-retest results were less robust, although IBI’s during supine, standing, 

sitting, and the mental stress tasks showed good to excellent reproducibility.  

Regarding feasibility, during ambulatory measurements, both the Cortrium and the 

Ithlete delivered at least two thirds of the maximum possible measurements. Participants 

reported that measurements were missed due to daily interferences, such as work obligations 

or leisure time activities. As all participants reported to have missed at least one measurement 

due to such non-adherence to instructions, we can identify non-adherence as an important 

contributing factor for missing data. Less often monitor related reasons were reported, such as 

technical difficulties and skin irritation due to ECG spot-electrodes. These findings can be 

interpreted as that HR(V) data collection with both wireless devices is feasible in highly 

protocolled ambulatory settings, although more valid data were obtained with the Cortrium 

than with the Ithlete. Main reasons reported for compliance were having agreed to complete 

the study and wanting to support research. It seems therefore worthwhile to invest in the 

participant- researcher relationship to reduce the amount of missing data in a study. Participants 
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reported no differences between the Cortrium and the Ithlete on user-friendliness and social 

acceptability. 

We conclude from the current study that under most of the laboratory tasks, the 

Cortrium and the Ithlete showed good to excellent agreement with a standard wired ECG 

reference method when assessing HR(V). It was shown that for measuring HR(V) during tasks 

that do not involve gross body movements or physical activity, researchers are not limited to 

standard wired ECG monitors but can also opt for the modern wireless heart rate monitors 

investigated in this study. These wireless monitors offer a number of advantages of interest to 

researchers such as: online data storage, no need for battery replacement, giving access to the 

raw data, and lower monitor costs. There was, however, a difference between the Cortrium and 

the Ithlete in sensitivity to motion artefacts, which is associated with the larger amount of 

missing data obtained with the Ithlete (especially during tasks which include motion such as 

the walking tasks). Our findings indicate that the Cortrium recordings are fairly robust to 

motion. As such, the signal of the Cortrium is expected to be not as strongly affected by motion 

artefacts as consumer-grade wrist-worn PPG monitors, such as Fitbit monitors or the Apple 

Watch, whose signal is less robust under motion conditions than ECG monitors such as the 

Polar H7 chest-strap (Wang et al., 2017). Conversely, wrist-worn PPG monitors do offer their 

own set of characteristics, which could offer advantages regarding feasibility in some research 

designs. For example, such wearables can offer the ability to provide continuous recordings, as 

the device can be worn comfortably for long periods. This is due to such wrist-worn wearables 

often being designed to be worn as a bracelet or a watch. This could also prevent participants 

forgetting the monitor or the measurements. In our study, the reproducibility of the Ithlete 

monitor dropped considerably during motion, more so than various wrist-worn PPG monitors 

under the motion condition (Wang et al., 2017). Such dissimilarities could be due to differences 

in laboratory tasks, for instance, using a treadmill walking task versus walking a predetermined 
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route alongside a research assistant for a pre-set duration. A future study investigating both 

types of PPG monitors under similar conditions could elucidate whether wrist-worn PPG 

monitors definitively outperform finger-worn PPG monitors during motion. The robustness of 

the Cortrium signal during motion is similar to a chest-strapped ECG monitor, such as the Polar 

H7. Additionally, it avoids some disadvantages of chest-strapped monitors, such as wearability 

issues during long-term measurements. While a chest-strap ECG such as the Polar H7 does 

offer relatively robust signal and was thus considered for use in the current study, it was found 

less suitable for our long-term monitoring goals due to wearability issues such as obstructions 

of clothes while putting on the monitor. Additionally, these modern heart rate monitors offer 

lower prices compared to fully-fledged Holter ECG monitor, as for the price of one VU-AMS 

system researchers can acquire approximately three to four Cortrium C3ۥ  s, or 100 Ithlete finger 

monitors. Such advantages offer researchers new opportunities for designing longitudinal 

studies wherein HR(V) data is monitored over weeks or months, in large samples within 

approximately the same budget. Longitudinal studies are necessary when studying dynamic 

processes, such as transitions from a healthy to a clinically affected state in patients, which 

unfold over timeframes longer than those studied in short-term research designs. The current 

study showed that the long-term ambulatory data collection required for such longitudinal 

studies is indeed feasible, although precautions are to be taken to minimize data loss and to 

improve adherence to instructions by participants.  

Results showed that the PPG-based Ithlete did perform less well in conditions with 

higher risk of motion artefacts, such as walking. This finding is in line with earlier research 

showing the vulnerability of PPG measurements to motion artefacts (Trivedi et al., 1997), 

while extending these earlier findings to both controlled laboratory settings as well as 

ambulatory settings. Hence, when considering whether to choose the Ithlete or the Cortrium 

for a scientific study one should consider if heart rate measurements are under conditions free 
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of potential motion artefacts, and whether participants can be recruited easily and 

inexpensively. Under such conditions the Ithlete could be a sensible choice. However, under 

other conditions, for example in physical active situations, the Cortrium would be the more 

sensible choice. Moreover, the amount of data yielded from the Cortrium was higher than that 

of the Ithlete (83% and 69% of the maximum possible amount, respectively) during the 

ambulatory measurement period. Therefore, in scientific and clinical contexts wherein 

minimizing missing data is required, the Cortrium does hold the advantage. This advantage is 

grounded in the higher robustness of the Cortriums’ ECG signal to motion related disruptions 

of stationarity when compared to the Ithlete’s PPG signal. The correspondence between the 

Cortrium and the VU-AMS is hardly surprising as both monitors measure the ECG signal of 

lead II, thus delivering R-peaks which are relatively large and easy to detect. It should be 

noted though that the larger distance between the ECG spot-electrodes for the VU-AMS 

measurements allow for an even more robust signal, even during 24h monitoring in 

participants in physical active occupations (Riese et al., 2004; Vrijkotte, van Doornen, & de 

Geus, 2000). 

While the current study showed agreeable performance of two wireless heart rate 

monitors in comparison to a wired ECG monitor, there are some limitations to be noted. First, 

reliability and validity characteristics of the HR(V) data were obtained from cross-instrument 

results under a controlled laboratory setting. These findings will thus only generalize to similar 

laboratory settings only. Reliability and validity of the Ithlete and Cortrium in ecological valid, 

unprotocolled ambulatory settings remains to be established as the two wireless devices were 

not tested against the ECG reference method and participants monitored themselves in real-life 

according to a highly standardized protocol (viz. after stabilization of the signal, in sitting 

posture). We did show that with both the Ithlete and the Cortrium HR(V) monitor data 

collection at home is feasible, although more valid data were collected with the Cortrium than 
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with the Ithlete. Second, we only assessed IBI and ln(RMSSD) calculated from the data yielded 

by the investigated heart rate monitors. There are, however, a multitude of other HR(V) metrics 

that are of interest to researchers, such as the high frequency spectral power band (0.15-0.40 

Hz) of IBIs. Future studies could extend the current study to assess performance of the 

Cortrium and Ithlete regarding these metrics. Although no major differences should be expects 

as these metrics often correlate strongly with each other (Massin et al., 1999; Shaffer & 

Ginsberg, 2017). Third, in order to provide insights in reasons for missing data, for example 

what number of measurements is missed due to either monitor issues or non-adherence to 

instructions, a dedicated ESM question could be included in future studies. This is 

recommended as it would provide more detail on the amount and reasons for missing data. 

Fourth, as participants wore the heart rate monitors simultaneously, during laboratory as well 

as daily life measurements, some burden might have been experienced. However, none of the 

participants indicated during the evaluation interview that this negatively impacted feasibility, 

or that it was a reason for missing measurements. Fifth, a method-specific limitation of PPG is 

that circulation characteristics can result in a phase delay between R-peak and volume pulse 

start (Lu, Yang, Taylor, & Stein, 2009). However, in our sample of young and healthy 

participants such variations in delays can be assumed to be negligible (Drinnan, Allen, & 

Murray, 2001) and was not expected to have interfered with the conclusions of the study. Sixth, 

feasibility results have indicated that there were more technical difficulties with the Cortrium 

and Ithlete devices than with the reference method during the laboratory sessions. While this 

can be considered a limitation of feasibility, the reference method is unsuitable for our specific 

future study goals as, for example, it was not wireless, and not allowing participants to initialize 

the monitor through their smartphones. However, the devices tested in the current study were 

selected based on multiple criteria given in the introduction, instead of focusing solely on 

robustness to technical difficulties. 
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Lastly, it should be noted that while our study did include a mental stress task, we did not 

observe the expected cardiovascular response in any of the monitors, but instead showing 

effects similar to those in the sitting and breathing tasks (see Table 1). This suggests that the 

used task setup was insufficient to elicit the expected cardiovascular effects of the mental stress 

task. 

In conclusion, two modern wireless heart rate monitors, the Cortrium and Ithlete, are 

able to provide data quality on par with a standard wired ECG reference method under 

controlled laboratory circumstances. Although both the Cortrium and the Ithlete performed 

similarly during non-motion tasks, the Cortrium was more robust during motion. Highly 

protocolled monitoring with the wireless devices in ambulatory daily-life setting is feasible. 

Participants highlighted work and spare-time activities as most common reasons to miss a 

measurement. Overall, we conclude that researchers can benefit from the advantages of modern 

wireless heart rate monitors such as online data storage and the absence of battery replacements 

without fully sacrificing data quality. 
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Abstract 

It is currently unknown whether the complexity and variability of cardiac dynamics predicts 

future depression and whether within-subject change herein precedes recurrence of 

depression. We test this in an innovative repeated single-subject study in individuals who had 

a history of depression and were tapering their antidepressants. In 50 individuals, 

electrocardiogram (ECG) derived Interbeat interval (IBI) time-series data were collected for 

five minutes every morning and evening, for 4 months. Usable data were obtained from 14 

participants who experienced a transition (i.e., clinically significant increase in depressive 

symptoms) and 14 who did not. The mean, standard deviation, Higuchi dimension and 

multiscale entropy, calculated from IBIs, were examined for time-trends. These quantifiers 

were also averaged over a baseline period and compared between the groups. No consistent 

trends were observed in any quantifier before increases in depressive symptoms within 

individuals. The entropy baseline levels significantly differed between the two groups 

(Morning: p-value <0.001, Cohen’s d=-2.185; Evening: p-value <0.001, Cohen’s d=-1.797) 

and predicted the recurrence of depressive symptoms, in the current sample. Moreover, 

higher mean IBIs and Higuchi dimensions were observed in individuals who experienced 

transitions. While we found little evidence to support the existence of within individual 

warning signals in IBI time-series data preceding an upcoming depressive transition, our 

results indicate that individuals who taper antidepressants and showed lower entropy of 

cardiac dynamics exhibited a higher chance of recurrence of depression. Hence, entropy 

could be a potential digital phenotype for assessing the risk of recurrence of depression in the 

short-term while tapering antidepressants. 

Introduction 

Determining the risk of recurrence of depression, especially when tapering antidepressants is 

a challenging problem. Tapering of antidepressants can typically lead to a worsening of 

depressive symptoms (1–4). Hence, warning signs indicating the possibility of recurrence of 

depression or worsening of symptoms are of immense importance. Complex dynamical 

systems theory predicts the presence of early warning signals in the response of a system 

before many kinds of transitions (5). Recent studies based on this have shown promise in 

predicting depressive episodes from momentary affect data(6–8). Such changes in the 

dynamics of depression could lead to potential warning signals in cardiac dynamics as well. 
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These could include measures such as the heart rate, heart rate variability, and complexity, all 

of which have been shown to be altered in patients with depression (9–11) . 

Since the response of the heart is well understood to be nonlinear, it is prudent to study its 

nonlinear dynamics when seeking warning signals for depression (12). These nonlinear 

dynamics can be quantified from the electrocardiogram (ECG) derived InterBeat-Interval 

(IBI) time series, using complexity measures such as the entropies, dimensions, and 

Lyapunov exponents. Disorders of various types including mental disorders (13–19), are 

associated with a reduction in the complexity of dynamics of the heart. The complexity of 

cardiac dynamics, as well as simpler measures such as the mean and variability of IBI have 

been shown to be reduced in individuals diagnosed with depression, as well as dysphoria 

(13,14,20–22), although there is debate about whether this reduction can be explained 

completely by the effect of antidepressants (11,23,24). For complexity measures of IBI time-

series to be potentially used as an early warning indicator for upcoming increases in 

depressive symptoms, a reduction in the complexity of cardiac dynamics must occur in the 

period before transitions towards higher levels of depression. This has not been empirically 

studied yet. 

To examine whether a reduction in the complexity of cardiac dynamics over time occurs just 

before patients transition towards higher levels of depressive symptoms, a single-subject 

design including IBI time-series data may be employed. A between-subject design, on the 

other hand, is appropriate if one wants to study average differences in complexity of cardiac 

dynamics that exist in the sample. The present TRANSitions In Depression (TRANS-ID) 

Tapering study employs a repeated single-subject design, where intensive longitudinal data of 

different types (momentary affect, physical activity and ECG) were collected for four months 

within formerly depressed individuals tapering their antidepressants, offering the possibility 

for both within-subject as well as between-subject studies (25–28). 

We examine whether a decrease in the mean, standard deviation and complexity in IBI time-

series data as captured with the Higuchi dimension and multiscale entropy precedes a 

depressive transition (i.e., recurrence of depressive symptoms) by 4 to 8 weeks, a timescale 

observed in previous studies (6,7,29). These complexity measures were chosen as they 

capture two different aspects of complexity. While the Higuchi dimension represents the 

number of variables required to capture the dynamics of the underlying process from which 

the time-series is derived, the multiscale entropy captures the information content in the time-
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series. We conduct repeated single within-subject analyses, where we study whether 

decreases in these quantifiers over time precedes a transition towards depression for each 

individual separately in formerly depressed individuals who taper their antidepressant 

medication. Furthermore, to study average tendencies, we also conduct a between-subject 

analysis to test whether the baseline complexity (chosen as the first 4 weeks of assessments), 

is lower for individuals who experienced a transition towards higher depressive symptom 

levels during the study period versus those who did not.   

Methods 

Sample 

Our sample consisted of participants of the TRANS-ID Tapering study, a study that aimed at 

examining early warning signals of increases in depressive symptoms during and after 

tapering of antidepressant medication (for details see (26)). In short, 69 individuals who had 

an earlier diagnosis with major depressive disorder (MDD) according to DSM-IV criteria 

monitored themselves for four months with weekly questionnaires, Ecological Momentary 

Assessment (EMA), actigraphy, and ECG sensors. These individuals made a shared decision 

with their mental health care provider to taper their antidepressant dosage (see SA1 for 

details) and did not meet the criteria for MDD at baseline.  

The study was approved by the Medical Ethical Committee of the University Medical Center 

Groningen (UMCG, METc2016.443). All patients were informed that they could stop their 

participation at any time and provided written informed consent prior to participation.  

Participants and procedures TRANS-ID Tapering ECG sub study 

The flowchart of the TRANS-ID Tapering ECG sub study is shown in Figure 1. Out of 69 

individuals, 50 individuals had usable ECG recordings. The presence or absence of 

transitions could be reliably calculated in 45 of these individuals. Among them 29 

experienced a transition in depressive symptoms, while 16 did not. From those with a 

transition we excluded 7 individuals who did not have at least 3 weeks of data prior to the 

transition, to avoid spurious trends caused by too few datapoints. Also excluded from this 

group were 7 individuals whose transitions occurred outside of the ECG measurement period 

and 1 individual who had only morning assessments. Hence, of the original 69 individuals, 
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valid ECG data were available for 14 individuals with a transition, which formed the 

transition group in the current paper. Of the 16 who did not show any transitions, 2 

individuals were excluded, as they had less than 3 weeks of data available for analysis, 

leaving a sample of 14 individuals who did not experience any transitions for analysis. 

Figure 1: Flowchart describing the patient inclusion for the present study. 
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ECG assessments and pre-processing 

Participants performed their ECG assessments at home after receiving a 15 minute step-by-

step instruction on how to do so during the introductory session. Additionally, participants 

received a written manual (see https://osf.io/zbrxe/), ECG-electrodes, and contact details for 

24/7 support (more details are given in SA2). The ECG files were processed meticulously to 

extract the InterBeat Interval (IBI) time-series data as detailed in SA3. 

IBI data processing 

Independent Variables: Four quantifiers were derived from each IBI time-series assessment; 

the mean and standard deviation, and two complexity measures, namely the Higuchi 

dimension and the multiscale entropy. All four quantifiers have been widely used to study 

cardiac dynamics (13,22,30–33).  

Mean: This is the average of the IBIs representing the mean time between two R-peaks. A 

higher mean IBI is reflective of a lower heart rate. 

Standard deviation: The standard deviation of the IBI time-series is referred to as the SDRR 

(standard deviation of RR intervals) and is a time-domain measure of the heart rate variability 

(33).  

Higuchi dimension: The Higuchi dimension estimates the fractal dimension of a time-series 

directly, without any need for embedding in higher dimensions, which reduces the number of 

points required for a reliable calculation. It calculates the scaling behavior of the length of the 

time-series curves when two parameters, namely the delay time and initial time, are varied 

(34). In the present work, the maximum delay time is set to be 5, since the number of points 

used for calculating lengths reduces at higher delays.  

Multi-scale entropy: The multiscale entropy measures the predictability of fluctuations in 

time-series, at different scales of measurement. A higher value of entropy indicates a higher 

complexity of the time-series. The multiscale entropy was estimated using the neurokit2 

package (35) and the Higuchi dimension was calculated using the HDFA package (36) in 

Python v3.5.2.  

Dependent Variable: The dependent variable in the study was a transition towards higher 

levels of depression based on the following criteria:1) a reliable increase (≥8.5 points) on the 
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weekly assessed SCL-90 depression subscale, 2) persistence of this increase for at least three 

weeks, and/or start or increase in treatment, and/or interruption of tapering, 3) a meaningful 

increase in depressive symptoms as experienced by participants based on a consensus rating 

of emails, telephone calls, open text fields, and the evaluation interview (see also (26,37)).  

For the analyses in this paper, in order to compare the samples of individuals who 

experienced a transition with those that did not, a pseudo transition point was determined in 

the individuals who did not experience a transition. The transition times in the non-

transitioning dataset were pair matched with the transition times of the transitioning dataset. 

Statistical Analyses 

The analyses are divided into within-subject and between-subject analyses, where the former 

identified changes in the quantifiers over time occurring within individuals, and the latter 

identified differences in average levels of the quantifiers during the 4 weeks of the study 

period between the individuals who experienced transitions and those who did not. 

Within-individual analyses: To study changes at the level of an individual, each of the four 

quantifiers mentioned above was calculated for every IBI assessment, over a pre-transition 

period defined as 8 weeks before a transition. To avoid significant loss of data, all datasets 

were required to have a minimum of 3 weeks of data prior to the transition. These generated 

time-series of quantifiers were categorized into the morning and evening time-series. The 

Kendall correlation coefficient between these quantifiers and time was measured to determine 

the time-trends. Significant time trends, as well as the direction of such trends preceding 

transitions towards greater depressive symptoms and in patients who stayed in remission 

were studied, and the number of individuals with significant trends were quantified. 

Between-individuals analyses: To study mean differences between individuals who 

experienced a transition in future and those that did not, we first took the mean values for 

each quantifier per individual, by averaging over the value for each measurement through the 

baseline period. The baseline period was considered as the first 4 weeks of measurement, 

with a minimum requirement of at least 3 weeks of data. These averaged quantifiers were 

compared between the groups by using the non-parametric Mann-Whitney U test. In addition 

to having multiple advantages over the more commonly used t-test, the Mann-Whitney U test 
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is more suitable for comparing small sample sizes and when the distributions are not normal, 

as in the case of heart rate variability measures (38,39). The effect size of the difference 

between the two groups was measured using Cohen’s d (40). 

In addition, to study how well each quantifier predicted an upcoming transition, we used 

logistic regression models to predict presence versus absence of a future transition using the 

calculated quantifiers at baseline. Since ECG variables are known to depend significantly on 

age, we also tested the models with age as a predictor. The goodness of fit was quantified 

using pseudo R2 values. The logistic regression was conducted in R version 3.6. (41). 

Since the actual time of transition from baseline varied between individuals, a sensitivity 

analysis was conducted by averaging over the whole pre-transition period identified for the 

individual level study above. This controlled for the time elapsed between the assessments 

and the transition. The mean-differences and predictive capabilities of the different 

quantifiers was then studied for the data averaged over the pre-transition period. 

Dependence among the quantifiers at baseline was measured using the Spearman correlation 

coefficient (Spearman’s ρ) averaged at the level of an individual. Being a rank correlation 

coefficient the Spearman’s ρ is both robust to outliers and can detect monotonic nonlinear 

trends. The p-value for significance was set at 0.05. The Mann-Whitney U tests, Kendall and 

Spearman correlations were performed using the scipy package in Python version 3.5.2 (42). 

 

Results 
 

Sample description 

Data of 14 individuals who showed a transition during monitoring and data from 14 individuals 

who did not were analysed. The gender ratio did not differ between the groups (78% versus 

71% women in the transition and non-transition groups respectively, p=0.66). Age was 

significantly higher in the transition group (M= 51.93 SD= 12.25, t = 2.19, p = 0.04) compared 

to the non-transition group (M = 41.79, SD = 11.30). The correlations between the different 

variables studied in our sample, averaged at baseline, with age and with each other are listed 

in Table 1. The mean and standard deviation of the IBI time series in the morning was related 

with age. Highest correlations were observed between the evening mean and standard 
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deviations, the morning entropy and morning dimension, and the evening mean and evening 

dimension measures. 

Table 1: Correlations between the different ECG derived quantifiers used in this study for the baseline 
assessments.  

Age MeanM SDM HDM MSEM 

Age 1 0.568 0.440 -0.146 -0.096

MeanE 0.221 1 
(0.188) 

0.646 
(0.121) 

-0.025 (0.037) -0.238
(-0.193)

SDE 0.182 0.855 (0.111) 1  
(0.090) 

-0.258
(-0.033)

0.084  
(-0.144) 

HDE 0.275 0.709 (0.408) 0.634 
(0.112) 

1
(0.188)

-0.742
(-0.361)

MSEE -0.299 -0.091
(-0.416)

-0.003
(-0.072)

-0.438
(-0.329)

1
(0.540)

Entries above the diagonal represent correlations between the morning assessments and entries below 
denote correlations between the evening assessments. Correlations of the morning assessments with 
evening assessments are given between the parentheses. The table lists the Spearman’s ρ correlations. 
Significant correlations (p<.05) are listed in bold. SD = Standard Deviation, HD =Higuchi Dimension, 
MSE=Multiscale Entropy 

Within-individual analyses 

We started by examining the IBI quantifiers for each individual for significant trends over 

time using Mann-Kendall trend test. Few trends were found in the hypothesized negative 

direction, that is, a decrease over time for the Higuchi dimension and the multiscale entropy. 

Within the morning assessments, we observe negative trends (14%) for the Higuchi 

dimension in 2 out of  the 14 individuals who experienced a transition and no trends among 

those who did not. No negative trends were observed for any individual with or without a 

transition in depression for the entropy quantifier. For the evening assessments, no negative 

trends were found for the Higuchi dimension, whereas one negative trend was found an 

individual without a transition (7%). No negative trends were observed for any of the 

individuals in either group for the entropy quantifier.  
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Positive time-trends were found in the morning assessments in 3 individuals (21%) for the 

Higuchi dimension and in 1 individual (7%) for the entropy among those with a transition. 

Three individuals in the non-transitioning group (21%) showed positive trends too for the 

Higuchi dimension, whereas no individuals in the non-transitioning group showed any trend 

for the entropy. In the evening assessments, the transitioning group showed no positive trends 

for the Higuchi dimension, whereas the entropy showed positive trends in 2 individuals 

(14%). The non-transitioning group showed positive trends in 4 individuals (29%) for the 

Higuchi dimension, and no trends for entropy. Detailed results for the within-individual 

analyses showing the trends for each individual and quantifier are presented in SA4. 

Between-individuals analyses 

Next, we studied group differences in the quantifiers averaged within individuals over the 

baseline period of 4 weeks. The mean differences for these averaged quantifiers between 

individuals who experienced a transition, and those who did not are listed in Table 2. Figure 2 

shows the corresponding distributions for the two groups, as violin plots. For the morning 

assessments, individuals who experienced transitions showed a significantly higher mean IBI 

and Higuchi dimension, and a significantly lower entropy than individuals who did not 

experience a transition. For the evening assessments the individuals who experienced a 

transition showed a significantly higher Higuchi dimension and a significantly lower entropy 

than individuals who did not experience a transition. 

Table 2: Differences in the person-averaged quantifiers between the group which experienced a 
transition and the group that did not.  

Quantifier Transition group 
(M ± SD) 

Non 
transitioning 
group 
(M ±SD) 

z-score p-value Cohen’s d 

MeanM 852.161±71.537 797.921±30.415 2.412 0.018* 0.987 
SDM 54.743± 8.976 58.788±1.752 0.253 0.133 -0.625
HDM 1.641 ±0.025 1.615 ±0.103 2.642 0.009* 0.344
MSEM 1.600 ±0.025 1.687 ±0.050 -3.469 <0.001** -2.185
MeanE 853.034 ±51.104 837.026 ±28.159 1.309 0.334 0.388 
SDE 45.475 ±8.362 43.738 ±4.907 0.804 0.525 0.253 
HDE 1.698 ±0.061 1.635 ±0.096 2.550 0.012 0.785 
MSEE 1.464 ±0.046 1.569 ±0.069 -4.296 <0.001** -1.797
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The quantifiers, namely the mean, standard deviation, Higuchi dimension and Multiscale entropy, were 
calculated from IBI measurements, The assessments were taken every day and averaged over the 
baseline period. The subscripts (M or E) refer to the time of the day when the ECG measurement was 
carried out (morning or evening). SD = Standard Deviation HD = Higuchi Dimension, MSE = 
Multiscale Entropy. The differences between the groups were measured using a Mann-Whitney u test. 

Figure 2: Violin plots showing the differences in the distributions of the person averaged quantifiers 
between individuals who experienced a transition and those who did nota. 

 a The panels show (a) mean (b) standard deviation (c) Higuchi dimension and (d) Multiscale entropy. 
The distribution for individuals who experienced a transition are in orange and those who did not are in 
green. The circles represent the entropy values for each individual, scattered randomly along the x-axis. 
The quantifiers were averaged over the baseline periods.  

The results of the logistic regression model used to predict whether the individual will 

undergo a transition or not, are given in Table 3. The model where the entropy alone predicts 

the transitions stood out with the highest explained variance among all the models 
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considered, with a lower baseline entropy significantly predicting a future transition towards 

higher depressive symptom levels. 

In Figure 3, we show the values of baseline entropy and error for each individual, calculated 

using the morning and evening assessments. The individuals with a transition occupy a region 

in the lower left of the graph, pointing out once again that low values of entropies were 

largely associated with individuals who experienced transitions in the study period. A grid 

search on the entropy values found 1.67 as the morning entropy value (25/28 individuals 

correctly classified) and 1.51 as the evening entropy value that best discriminates the two 

groups (27/28 individuals correctly classified). Noticeably, in this sample, a smaller within-

person standard deviation was observed in the entropies associated with the evening 

assessments, indicating that the entropy measurements during the morning were less stable 

than the evening. 

Table 3: Logistic regression models predicting depressive transitions during study period.a 

Predictor Estimate SE z-value p-value R2 Correctly 
predicted 
(%) 

Transition~Age 
Age 0.069 0.035 1.967 0.049 0.203 67.9 
Transition~MeanX 
MeanM 16.803 7.774 2.161 0.031 0.253 75.0 
MeanE 9.340 9.407 0.993 0.321 0.048 64.3 
Transition~SDX 
SDM -103.945 71.873 -1.446 0.148 0.122 60.7 
SDE 36.755 55.556 0.662 0.508 0.021 39.3 
Transition~HDX 
HDM 4.706 5.407 0.870 0.384 0.039 75.0 
HDE 11.529 6.769 1.703 0.089 0.191 67.9 
Transition~MSEX 
MSEM -37.75 12.49 -3.021 0.002 0.635 82.1 
MSEE -150.73 73.41 -2.053 0.040 0.880 96.4 

a The models show how well transition status is predicted by the baseline quantifiers. The listed R2 value 
is the Nagelkerke R2. 
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Figure 3: Scatter plot showing the entropy values for the morning and evening for each individuala.  
a Red crosses represent individuals who experienced a transition, and the blue circles represent 
individuals who did not. The error bars represent the standard error. 

 

 

Sensitivity analysis 

The sensitivity analysis, calculating the correlations, mean differences and predictive capacity 

of the quantifiers averaged over the pre-transition period instead of the baseline period, are 

presented in the supplements (SA6). Again, lower entropy over the pre-transition period was 

most strongly associated with the presence of a future transition in depressive symptoms, 

showing the highest significance in the Mann-Whitney U test and highest explained variance 

in a logistic regression. 

 

Discussion 

This work explored how the complexity of IBI time-series data behaves before a transition 

towards more severe depressive symptoms. While very few trends within individuals over 

time were observed in the different cardiac quantifiers before a transition towards depression, 
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we found that the baseline levels of entropy were significantly lower for individuals who 

experienced a transition compared to individuals who did not. In addition, we found higher 

mean IBIs and higher Higuchi dimension for individuals who experienced transitions. This 

seems to indicate that below a threshold level of complexity of cardiac dynamics, individuals 

who taper antidepressants are vulnerable for recurrence. Moreover, the combination of higher 

fractal dimension and lower entropy in individuals who experienced transitions suggests that 

these time series exhibit more noisy behaviour(43,44).  

The present work is significant in multiple ways. First, it provides little evidence to support 

the existence of within individual warning signals in IBI time-series data that precede and 

predict an upcoming depressive transition, in line with similar studies using ecological 

momentary assessment and actigraphy data (25,37). Second, the current study shows that 

lower entropy values derived from IBI time-series indicate that individuals are more likely to 

experience an increase in depressive symptoms in the coming months, which may be helpful 

information when deciding on whether antidepressant medication should be tapered. Based 

on this we speculate that IBI time-series derived entropy quantifiers could become promising 

biomarkers for determining if antidepressants can be tapered with a reduced risk of 

recurrence of depression. Third, the current study answers an important question on how the 

complexity and variability of cardiac dynamics change before the recurrence of depression. 

While we find that the complexity of cardiac dynamics is significantly lower in individuals 

who experienced a transition towards increased depressive symptoms, no decrease in 

complexity over time was observed before transitions in most individuals. An explanation for 

the absence of this change is that the decrease in complexity may have taken place at a scale 

longer than the 8 weeks considered. An alternative reason could be that the loss of 

complexity is a stable vulnerability that persisted in some individuals from a previous episode 

of depression, since the sample consisted of individuals who experienced an episode 

previously. Based on past work, we expect that an earlier episode would have been associated 

with decreased complexity of cardiac dynamics (11,15), and individuals who experienced a 

transition in this sample possibly did not fully recover their complexity (45). 

A major limitation of the study, originally designed for within-individual analysis, is the 

small sizes of the groups for the between-subject analyses. The current study explored 

multiple indicators in this small group of participants and may therefore be overfitting the 
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sample. Moreover, despite the large effect sizes observed for the entropy, inter-individual 

differences may not be fully captured. A second limitation is the tapering of antidepressants 

in the current sample. The cardiotropic effects of antidepressant medication on the dynamics 

of the heart are well documented, with many of them causing a reduction in the mean heart 

rate and its variability (22,46–48). This intake could dominate the effects of the upcoming 

transition, if any, on the cardiac dynamics. A considerable fraction of the present sample 

majorly tapered their antidepressants during the baseline period (17 participants reported 

tapering more than 2/3rds of their dosage in the baseline period). This could have changed the 

cardiac dynamics during the baseline period in both groups. A third limitation was the strict 

protocols set for the self-assessment of ECG. Apart from being burdensome, such strict 

assessment instructions could have resulted in cardiac dynamic signals with less noise, 

limiting generalization to other studies with ambulatory ECG assessments. However, with 

improvements in ambulatory ECG monitoring using less obstructive devices, it may be 

possible to monitor the complexity of the heart more easily for an extended time in normal 

daily life (49,50). Future studies are needed to estimate how well the results of the current 

study generalize to new samples. 

The promising results of our study points to the need for a larger exploration of the use of 

cardiac complexity measures as a predictor for depression. If validated by future studies, 

patients who are planning on tapering their antidepressant medication may assess their ECG 

at home to assist decision making(51). Furthermore, we suggest including the IBI complexity 

measures used in this study in other models which predict recurrence of depression (52,53).  

While this study finds that complexity measures are lower in individuals who experience a 

recurrence of depressive symptoms, the results do not indicate whether this is true in 

individuals who experience a depressive episode for the first time, or in individuals who are 

not tapering antidepressant medication. We recommend exploring the variation of complexity 

of cardiac dynamics prior to transitions towards depression in other samples, where these 

drawbacks may not exist. 

In conclusion, this study suggests that quantifiers of complexity of cardiac dynamics can 

serve as an indicator for future recurrence of depressive transitions. While the study failed to 

find any trends in these quantifiers preceding depressive symptom transitions, it suggests a 

strong possibility of using complexity-based quantifiers to identify individuals at risk for 

recurrence of depression (54). Though many challenges remain to be solved before a clinical 
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implementation is feasible, we believe that these indicators can greatly aid in decision making 

in the context of tapering antidepressants. 
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Chapter 8: General summary, discussion and conclusion 

General Summary 
In this thesis I aimed to investigate the transitions in (depressive) mood symptoms 

from a complex dynamical system perspective. For this, early-warning signals (EWS) were 

calculated from physiological and behavioural time series data. In chapter 1 the background 

and rationale for the following research questions are given: (1) are increases in actigraphy 

and electrocardiogram (ECG) derived EWS  predictive of transitions in the severity of 

(depressive) mood symptoms? (2) are changes in context-driven indices predictive of 

transitions in symptoms? (3) are changes in actigraphy-derived mean activity levels 

predictive of transitions symptoms? Before I could investigate these questions, data had to be 

collected and pre-processed from its’ raw form into statistical analysable time series data 

formats. In chapter 2, I showed the developed software suite for analysing raw actigraphy 

data, the ACTman R package. The ACTman package enables researchers to automate pre-

processing and analyses steps when working with actigraphy data. By doing so in this 

structured way, the risk for human error is reduced and laborious pre-processing steps have 

been automated to expedite actigraphy research. 

In chapter 3, I studied in individuals diagnosed with bipolar disorder, the ability of 

actigraphy-derived generic EWS (variance and kurtosis), context-driven warning signals 

(autocorrelation at lag-720), and spectral periodicity indices (to check whether participants 

24h circadian rhythm changed) to predict upcoming transitions in mood episodes. EWS and 

spectral indices were able to detect upcoming changes in mood episodes in some of the 

bipolar patients, although not in all. Future studies into the false-positive rates of this method 

are required to assess its sensitivity and specificity characteristics. The studied EWS and 

spectral indices would often perform more akin to general instability markers than as 

transition markers, by, for example, showing a high degree of variability (rapidly increasing 

or decreasing EWS values) instead of the expected consistent increase in EWS values. 

Perhaps this issue is more pertinent in our sample of bipolar patients, who showed rapid 

switches between depressed, manic, and euthymic episodes. This is in contrast to patients 

suffering from unipolar depression, who do not experience manic episodes. Yet, this study 

showed the feasibility of using actigraphy data to calculate useable EWS and spectral indices, 

and thus laid the important groundwork for subsequent actigraphy studies on the TRANS-ID 

data. 
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In chapter 4, I studied the TRANS-ID Tapering sample of patients with a history of 

suffering from unipolar depressive symptoms, who were tapering the dosage of their anti-

depressant medication. Here, a repeated single subject design was used to test our hypotheses. 

We expected to find within individuals with a transition into more severe depressive 

symptoms; (1) increased critical slowing down based EWS (variance, kurtosis, and acf-1), (2) 

increased IS and acf-1440, and decreasing IV, and (3) decreased mean levels of physical 

activity. Actigraphy data that were continuously collected by the participants for four months 

were used in the analyses. I applied a similar EWS analysis pipeline as developed for the 

analyses described in chapter 3; that is using a moving window strategy in which EWS 

(variance and kurtosis) are calculated and in this way creating new time series. Additional to 

generic EWS (variance, kurtosis, and autocorrelation at lag-1), more context-driven variables 

(interdaily stability (IS), intradaily variability (IV), and autocorrelation at lag-1440), were 

developed which were expected to provide unique information given their direct relation to 

the circadian rhythm of the participants. For this, instead of investigating averages of 

actigraphy time series data of mainly one minute, as used in chapters 2 and 3, I looked into 

autocorrelations of actigraphy data over 24-hours (lag-1440), given its relation to the 24-hour 

circadian rhythm. I found that in seven out of eight patients a significant change was 

observed in at least one of the three studied EWS, up till four weeks before an episode onset. 

However, while the obtained results were not fully in line with what was hypothesised (e.g., 

the direction of acf-1440 was reversed from what was expected), they provided a starting 

point for post-hoc analyses. For this, false positive rates were calculated and receiver 

operating characteristic (ROC) curves were constructed to assess specificity and sensitivity. 

We concluded that using EWS combinations can outperformed using single EWS, although 

this has to be further confirmed in a larger dataset. The results of this study indicate that the 

assumption that EWS are generic, and can thus be found in differing data types, such as 

actigraphy, can hold true. 

In chapter 5, I investigated the complexity of recurrent physical activity patterns in a 

nomothetic study including participants with and without a diagnosis of depression. While 

such recurrence analyses are theoretically distinct from the previously studied EWS, they 

showed similar promise in predicting transitions in mood symptoms. Studied complexity 

markers included determinism, laminarity, and the ratio between these two. Physical 

activities such as walking, biking, working at a desk job, that are repeated over time produce 

a specific recurrent activity pattern (Lu & Tong, 2019). Such recurrent physical activity 
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patterns are expected to help to differentiate between a group of depressed and non-depressed 

participants Compared to the controls, the group diagnosed with depression did not differ on 

mean activity levels. However, as expected, lower levels of complexity were detected in the 

actigraphy data from the depressed compared to non-depressed, both in terms of lower mean 

durations of periods of recurrent physical activity and less diversity in the duration of these 

periods. 

In chapter 6, feasibility, validity, and reproducibility of Interbeat Intervals (IBIs) 

gathered with two ambulatory electrocardiogram (ECG) monitors (Cortrium C3, 

cortrium.com, Ithlete finger sensor, myithlete.com) were studied. Both monitors were tested 

against a wired ECG reference monitor. I found that the two wireless ECG monitors 

delivered data with somewhat lower accuracy that the wired reference method, especially 

when participants were moving. Yet performance of the two tested monitors were found to 

perform at sufficient levels of feasibility, validity, and reproducibility, wherein the Cortrium 

device, given its robust data signal, was found to be the most suitable monitor for the data 

collection during our TRANS-ID studies. 

In chapter 7, we investigated in a within-person study design whether the mean, 

EWS (variance) and complexity measures (Higuchi dimension and multiscale entropy) 

decreased in the period before a transition in depressive symptoms using the IBI data 

gathered in the TRANS-ID Tapering study. This was investigated as prior research has 

suggested that individuals suffering from depression might show decreased levels of cardiac 

complexity (Leistedt et al., 2011). Thus, we expected the IBI time series derived complexity 

indices to decrease in the period before the transition. In this study we did not find any 

evidence to support the notion that warning signals based on IBI time series data occurred 

preceded transitions in depressive symptoms. Moreover, we found that antidepressant 

tapering participants experienced lower entropy in cardiac dynamics, and had a higher risk 

for experiencing an recurrence of depressive symptoms. These complexity indices thus show 

promise for estimating risk for recurrence of depressive symptoms.  

Based on the studies presented in this thesis, I would argue that we can answer the 

question of whether we can use EWS calculated on actigraphy and IBI time series  data to 

foresee transitions in depressive symptoms with a resounding ”Maybe”. While not as clear 

cut as a “no” or a “yes”, I think that our investigations have shown that the predictive 

performance of such EWS hold some promise and warrant future studies herein. Hence, I 
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conclude that the hardware and software to collect and analyse intensive physiological time 

series data are available and feasible for those goals. However, it would be too much to say 

that the EWS we investigated are currently fit for clinical application in detection of 

transitions in depressive symptoms. For that, the predictive capabilities are not yet convincing 

enough. Additionally, there are currently still unexplored possibilities to tailor combinations 

of device settings, recording lengths, and statistical analysis choices that could potentially 

improve the predictive performance of EWS. In the following I will motivate and reflect on 

these statements.  

Assessment of actigraphy time series data 
The studies presented in this thesis sometimes faced unforeseen challenges in 

collecting ambulatory time series data by the TRANS-ID participants in their normal daily 

life, or in (pre)processing and analysing them. While the ACTman software suite streamlines 

actigraphy data pre-processing, the actigraphy research field as a whole might benefit from a 

more systematic and standardized way of formatting (raw) actigraphy files. For example, the 

two actigraphs currently supported by the ACTman software do still require the native 

software for initial converting proprietary raw data formats into general open-source formats, 

such as .csv or .ods. With the ACTman software suite, I enabled the automatic pre-processing 

of the collected actigraphy data used in the current thesis. For generalisability and 

comparability to other actigraphs, readily analysable data in a standardized format is required. 

Other researchers have also identified this issue and have pointed out the importance of using 

alternative and generalisable actigraphy algorithms, such as using the Euclidean Norm Minus 

One (ENMO) as a general algorithm to pre-process the data and separate the movement and 

gravitational forces from the data (Bakrania et al., 2016). However, as used actigraphy 

algorithms are often proprietary and widely differing components between manufacturers are 

used (using different filters, amplifiers, or frequencies), it seems worthwhile considering 

introducing an industry norm, such as the DIN-norms (Deutsches Institut für Normung; 

German Institute for Standardisation Registered Association) currently used for things as 

electrical outlets, or connectors. By doing so standardisation of actigraphy monitors can be 

applied more consistently. To give a practical suggestion, such standardisations can take the 

form of advising all actigraph manufacturers to always include a standardised time unit, say 

one second, and to assess in standardised units such as g instead of proprietary “step” or 

“count” units. While actigraphy step or count units seem an intuitive unit to use, this 

advantage is hindered by manufacturers use of self-designed – but highly similar – units, such 
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as the MotionWatch count instead of a normal count. As these counts are calculated 

differently it becomes very difficult to compare data derived from actigraphy monitors that 

use differing units.  

In general, device specifications are often idealised by the manufacturer. Take, for 

example, the maximum boot space of a car. Car manufacturers like to advertise their large 

boot spaces to outdo their competitors. However, they all provide the boot space numbers in 

litres, which makes the boot seem large; but how often do you go about filling your boot with 

an actual liquid? The actual usable boot space will often be much lower as baggage in solid 

form will often leave space unused. When considering actigraphy hardware issues, these can 

be observed with physiological data monitors such as the CamNTech Motionwatch 8 used in 

our TRANS-ID study. Here product specifications mentioned possible recording length of 

over four months. When using the sample frequency needed to obtain data useful for 

scientific research only up to two months monitoring was feasible. The battery and data 

storage challenges with the monitor observed during the pilots needed protocolized attention 

in the main study. However, even with protocolled replacement of actigraphs for each 

participant, issues related to battery changes were a major contributor to missing data. 

Potential solutions may be using monitors that are chargeable by participants themselves, or 

come as a pair with a dedicated docking station wherein one device can be charged while the 

other is worn.  

Assessment of IBI time series data 
Whereas there were plenty of options to select a well-established and validated 

actigraphy device which were in line with our study requirements, the pool of suitable 

wireless ECG monitors was considerably smaller. Wireless monitoring was essential for our 

ambulatory TRANSID study as long wires attached to the electrodes can be pulled and 

detached from the monitor by accident, thus causing missing data, while they can also hinder 

participant movement, or provoke device mishandling errors as participants can accidentally 

attach the wrong wires to the wrong electrode (Shin et al., 2005; Winokur et al., 2013). Given 

the small number of suitable monitors, we deemed a dedicated validation study of ECG 

monitors necessary. In a validation study in chapter 6, the feasibility, validity, and 

reproducibility characteristics of two ECG monitors (Cortrium C3, cortrium.com, Ithlete 

finger sensor, myithlete.com) were investigated in both standardised laboratory- and 

ambulatory settings against a wired standard ambulatory device. Whereas the wireless ECG 

monitors did show somewhat lesser performance when compared to the wired reference 
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method – especially during activities wherein there was an increased risk of motion artefacts 

(e.g., walking) - they were found to perform at sufficient levels of feasibility, validity, and 

reproducibility. We found that the Cortrium outperformed the Ithlete on providing data with 

less noise, and being more robust against movement artefacts. Therefore the Cortrium was 

selected for monitoring in the main study. Participants in the TRANS-ID study collected their 

ECG data for four months, twice a day (morning, evening) in sitting position. ECG data were 

pre-processed with inhouse developed CARSPAN software (Mulder et al., 1995) to obtain 

IBI time series for the planned statistical analyses. 

When considering ambulatory ECG hardware issues, we observed that a relatively 

large portion of data were lost due to monitor malfunctions or underperformance. For 

example, the Cortrium C3 device had three robust small metal and rubber-coated legs to 

which the ECG spot-electrodes were attached. However, we observed a multitude of devices 

being returned in a damaged state. The type of damage (the electrode legs connecting the 

device body to the ECG electrodes being broken off) did suspect that either too much force 

was applied when detaching the device, or that the electrode legs were not designed for the 

period of time we employed them. First indication of breakage was typically when the data 

were checked for distortions. These experiences were shared with the Cortrium company to 

that they were able to improve these points and incorporate these improved components in 

the next device version. 

Actigraphy and IBI time series derived predictions of transitions in depression 
When comparing our actigraphy derived EWS results with the limited existing 

literature, I concluded the following. First, application of EWS in highly complex real-life 

systems in psychiatry is still rather unique. While systems such as climate were investigated 

with EWS (e.g., Scheffer et al., 2009), applying these techniques to human physical activity 

time series data in order to study transitions in mood symptoms is truly novel. Second, some 

of the actigraphy data derived generic EWS were moderately successful in predicting 

transitions in depressive symptoms with comparatively low false-positive rates. However, in 

clinical practice finding a balance between false-positive and false-negative rates depends on 

many factors (i.e., how bad is it to miss a true alarm vs. how bad is it to have a false alarm, 

participant burden), and should be determined in cooperation with patients and their 

clinicians. Third, while reflecting on the theoretical starting point of the current thesis, 

namely the complex dynamic system theory from which we hypothesised that any time series 
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data set could pick up EWS for upcoming transitions, the findings of this thesis do not 

support the theory. In this thesis other time series derived measures to predicted upcoming 

transitions were explored also as well. Context-driven signals, such as acf-1440, could 

potentially also be useful in predicting transitions, as we found that when we released the 

direction criterion (i.e. expecting only increases) its predictive performance increased. This 

can be interpreted as suggestive evidence that the expected directions for context-driven EWS 

we had before commencing the study were inaccurate. Fourth, regarding our study 

investigating complexity measures in ambulatory ECG data, we were not able to find within-

person evidence for the investigated EWS or complexity measures. However, we did find 

substantial differences between baseline levels of complexity within individuals who had 

experienced a transition and those who did not experience such a transition in depressive 

symptoms. Whether the lack of trends was due to anti-depressant medication use, or because 

such trends normally start well before the studied time period, remains yet unclear. Given the 

novelty of this study there is a need for replication studies hereinto. Moreover, given the 

limited sample size the current results are not expected to generalise well to other or larger 

samples. Hence, replication studies in more individuals are required to test this more 

thoroughly.  

Nomothetic and idiographic research designs 
Regarding future study designs, a next step could be to design studies balancing a 

nomothetic (group-based) and idiographic (single-subject) research approach (Zuidersma et 

al., 2020). Researchers and clinicians are currently typically trained from a nomothetic point 

of view and findings on the “average” patient which end up in clinical treatment guidelines. 

There is an increased need for an idiographic or single-subject approach as this approach is 

more in line with clinical practice were the clinician will aim for a personalized treatment for 

individual patients (Herrman et al., 2022).  Indeed, in the studies presented in this thesis a 

balance between nomothetic and idiographic approaches was often employed. Consider, for 

instance, chapter 4 wherein we were interested in whether we could find EWS to support 

predicting transitions in individual patients, but were also interested in whether positive 

individual findings could also be found at the larger group level. Chapter 8 focused more on 

the nomothetic outcomes of the study, but would still carry a substantial idiographic 

component as data gathered and analysed at the individual level could potentially still help 

patients predict transitions in mood symptoms. Consistent with other TRANS-ID studies who 

investigated foreseeing transitions in depressive symptoms using Experience Sampling 
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Method (ESM, or electronic diary) derived EWS (Helmich, 2022; Smit, 2022), we found that 

EWS calculated from actigraphy or IBI time series data were not able to consistently foresee 

transitions in depressive symptoms. Moreover, in line with others (Bos et al., 2022) I also 

conclude from the findings of my thesis, that especially in study-designs centred around 

many replications of single-subject studies wherein we are essentially more interested in an 

individual’s EWS performance instead of group EWS performance, individual differences are 

to be expected. Notably, there may also within a single-subject heterogeneity. That is, while 

at one point an EWS can have predictive value for a patient; this does not mean that this will 

remain true for any amount of time. Additionally, when considering time and transitions it 

can be elucidating not only to investigate for what period of time EWS can have predictive 

value, but also at what time scale we expect to find transitions; a point we will discuss in 

more detail in the next paragraph.  

Time scale of transitions 
In chapter 4, I also investigated in more detail at which time scale transitions in 

depression occurred. While autocorrelation at lag-1 is often used in EWS studies (Maturana  

et al., 2020; Wichers & Groot, 2016), it is not a standardised method and it should be noted 

that autocorrelation at lag-1’s outcomes depends on the resolution at which the assessment 

device/software outputs the data. Lag-1 can mean that autocorrelations were calculated from 

data assessed at the minute level, as is the case of the actigraphy data studied in chapter 4, 

while lag-1 can also refer to data assessed at the day, hour or millisecond level. The latter is 

the case for ECG assessment, while ESM assessment intervals are typically hours apart. As 

already suggested above, it might be worthwhile to investigate if and how actigraphy 

assessments can be standardised if we would like to improve the interpretability and 

comparability of the yielded data in mood disorder research. There is no such thing as a gold 

standard amongst autocorrelation lags, and it might be worthwhile to explore alternatives 

which are ought to have a conceptual link with the topic in question. For example, our choice 

for studying autocorrelation at lag-1440 was based on our data binned at the minute level, 

such that lag-1440 represents a 24 hour or day cycle (as there are 1440 minutes in a day). 

Such chosen lag-sizes differed in some chapters (for example lag-720 and lag-1440) 

according to the research topic. For instance, in chapter 4, I chose lag-1440 (i.e., 24 hours) as 

it approximately corresponds to the circadian cycle. However, by doing so I have created an 

autocorrelation value that is different from the commonly used autocorrelation at lag-1, and 

thus does not strictly adhere to the dynamical system theory underlying lag-1 
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autocorrelations. Studying this circadian variant of autocorrelation offers possibilities for 

investigations into time scales we expect to find theoretically relevant changes. Consider, for 

example, the plots in figure 1. Here autocorrelation values are shown for lag-1 till lag-1500 

based on actigraphy time series data of two individuals. Note the fluctuations between 

positive and negative autocorrelation values over the day; the autocorrelation for acf-720 

(yellow line) is negative most of the times, in contrast to the autocorrelation for acf-1440 (red 

line) which is mostly positive. Both plots follow the same pattern one would expect to see 

from an autocorrelation function. That is, at lower lags autocorrelation is very high, as a 

measurement at this moment should be highly similar to a measurement a mere minute ago. 

However, the autocorrelation values keep decreasing, reaching negative values around acf-

720. Thereafter the autocorrelation values rise again. This could intuitively make sense, as if

you are awake now, chances are high you were asleep 12 hours ago. On the other hand, if you

are awake now, chances are high you were awake 24 hours ago. By more systematically

investigating the effects of using autocorrelations with different lags in actigraphy based time

series data, it might be possible to study at which time scales transitions in depressive

symptoms co-occur with changes in predictors derived from physical activity. Large

longitudinal datasets, such as the TRANS-ID study which includes 4 months of data per

participant, are a promising testing ground to investigate autocorrelation at a multitude of

lags; from lag-1 (one minute) to, for example, lag-10080 (1 week) and every lag in between.

While we do not yet know at what time scale to expect transitions in mood disorders,

systematically exploring various lags in actigraphy data might help elucidate on what time

scales changes may take place. Such findings could then form the basis for theories on the

time scale of the course of mood disorders which in turn might inform future investigations

into this topic. In the next paragraphs, I will discuss the clinical relevance of our

investigations and I will comment on the development of a clinical tool based on the methods

and techniques presented in this thesis.
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  Fig. 1: Examples of a full auto-correlation function (ACF) from lag-1 till lag-1500 

on actigraphy time series data of two individuals. The yellow and red lines show 

autocorrelation lags at respectively lag-720 (12h) and lag-1440 (24h). The x-axis shows the 

number of lags, while the y-axis shows the autocorrelation values (varying between 1: perfect 
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positive correlation, and -1: perfect negative correlation). Fundamental frequency given in 

the plot title refers to the length of that an individual’s circadian rhythm within the measured 

time period. 

 

Clinical relevance & clinical tool development 
From my thesis results, I conclude that using EWS to predict upcoming transitions in 

mood for both unipolar and bipolar depression, be it via actigraphy or inter-beat intervals 

data, is currently not sufficiently effective for clinical implementation. Expectations based on 

complex dynamical system theory were not clearly supported and therefore plans for clinical 

implementation should be tampered. In this paragraph I want to further elaborate the clinical 

relevance of my studies and outline a potential road for clinical tool development.  

In this thesis, studying EWS in patients suffering from mood disorders was performed 

with multiple goals in mind. One important goal is to facilitate the development of a helpful 

clinical tool to predict clinically significant changes in mood. The promise of such a clinical 

tool is relatively simple; it would allow clinicians and patients to receive early warnings of 

upcoming transitions in real-time, hopefully, these warnings would come early enough to be 

able to timely intervene and prevent negative transitions in mood. While sounding ambitious, 

we do have to remember that highly similar tools are already available for other types of time 

series data, such as financial market data. For example, simple and free-to-use websites such 

as www.tradingview.com allow users to study and analyse financial market data in real-time, 

using a plethora of validated and user-created indices. Websites such as 

www.tradingview.com show that the technical requirements for online real-time data analysis 

are already available (see figure 2).  
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Fig. 2: Graphical user interface showing real-time financial market monitoring and on-the-

fly analyses on https://www.tradingview.com/chart/?symbol=spx. The upper panel shows 

price fluctuations of Bitcoin versus the Euro between 2018 and 2021. The middle and lower 

panels show real-time calculated indicators, respectively Note: MACD, Moving Average 

Convergence/Divergence; RSI, Relative Strength Index. 

However, before this could become a reality for clinical applications, quite some 

future research is required. In my opinion, the most pertinent issues hampering the 

development of such a tool for (psycho)-physiological time series data are: (1) the need to 

further investigate EWS and related markers to use within such a clinical tool, in differing 

patients groups and settings; (2) online data and privacy protection conform current privacy 

regulations; (3) lack of available monitors capable of both real-time data collection, storage, 

and analysis, and; (4) evaluations of the specific needs of such a tool expressed by patients 

and their clinicians. I will elaborate on these four issues next. 

First, while studies presented in this thesis provide suggestive evidence for a number 

of generic- and context-driven EWS which could be promising to include in such a tool, 

future studies are needed to see whether these EWS are also effective in (slightly) differing 

patient groups. For example, while we tested EWS in samples of both bipolar patients and 

individuals with a history of unipolar depression who were tapering their medication, other 

samples should also be investigated. By investigating EWS in more and differing samples we 
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could get a better idea of how EWS perform, and under which circumstances their predictive 

performance is best. Patients can experience a wide range of treatments, medications, and 

life-events, and we currently do not know well enough how these impact the predictive 

performance of EWS. In the current thesis, we did not investigate EWS in individuals who´s 

mood improved as a result of treatment for depression. Collecting (psycho-)physiological 

time series data before, during, and after treatment can be used to study these kind of 

transitions wherein the change is a positive one. Or to be more specific, from a depressed 

state to a non-depressed state instead of vice versa, as was done in the TRANS-ID Recovery 

study (Helmich et al., 2020). In the TRANS-ID Recovery study also actigraphy and IBI time 

series data were gathered but not analysed yet. Second, as personal data is being collected 

and streamed into online repositories, considerable attention is required to safeguard the 

associated servers against malicious attacks, such as storing privacy-sensitive data on 

certified and secured servers (Sytema & van der Krieke, 2013). Third, I would encourage 

deepening cooperation between university medical centres and medical device manufacturers. 

While both can have different goals (e.g., profit vs. non-profit), aligning both parties is 

needed to develop a device which would be advanced enough to allow for real-time data 

collection and analysis, while still being robust and reliable enough for long-term ambulatory 

assessments. Fourth and lastly, both clinicians and patients will have to be heard about their 

preferences for a clinical tool. For instance, the monitoring schedule should not hinder 

participants or be too much of a burden. Pilot studies and patient and clinician focus groups 

can help establish acceptable monitoring schedules and clinical needs for early warning 

signalling derived from gathered data.  

In summary, while working on the ambition to develop a clinical tool for foreseeing 

transitions in depressive symptoms to support patients and clinicians, there is more research 

required to optimise (real-time) data collection and analysis, and to investigate and select the 

best performing EWS parameters. Additionally, having systematic evaluations with patients 

and clinicians on what would be acceptable false- and true alarm rates, is essential for all 

clinically relevant future EWS research in psychiatric settings. Notably, also the 

implementation of novel, and openly accessible information technologies may help accelerate 

such research, although this would require incorporating such open science practices even 

more in academic practice; a point I will discuss in the following paragraph. 
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Scientific relevance: Open Science 

With the increased application of information technologies in the academic world 

over the last decades, technological thresholds for improved openness and transparency in 

academia have been taken away, for example by the introduction of globally accessible 

online repositories for research materials, documentation, and – where possible given privacy 

regulations – research data (van der Zee & Reich, 2018). The endeavours to improve the way 

we conduct good science are known as Open Science practices. Efforts to improve Open 

Science are often not part yet of researchers regular training, education, and daily work and 

might thus be better characterized as academic citizenship activities (Macfarlane, 2007). 

Starting with our work in the TRANS-ID project, we strived to archive and register the 

materials we could share, such as study protocols, materials, and other information on online 

repositories. Moreover, writing a PhD thesis in the Open Science emerging era influenced me 

as a researcher. Open Science can be defined as a movement striving to increase 

reproducibility by improving availability of research materials, and to increase transparency 

in academic work and the presentation thereof (McKiernan et al., 2016). I applaud and 

actively participated in the recent debate in the scientific community on how to effectively 

cooperate and disseminate knowledge in the light of substantial advancements in information 

technologies. Investigations revealing sub-optimal reproducibility rates of the scientific 

literature in psychology (Aarts et al., 2015) and cancer biology (Nosek & Errington, 2017) 

have added gravity to this matter and added to the motivation of the scientific community to 

critically reflect on itself and actively look for improvements. Developments such as 

increased awareness of open access possibilities and increased availability of cloud-based 

repositories for storing and sharing scientific data storage, have changed scientific workflow 

and practices. Given their importance, I have helped develop improved crowdsourcing 

strategies which allow for easier and more efficient research collaborations (Aczel et al., 

2021). Moreover, I have participated in novel crowdsourcing strategies to investigate how 

many analyses results are conditional on choices made by the analysts (Bastiaansen et al., 

2020). Also, I actively participate in an expert group within the Belgian-Dutch ESM Network 

for ESM Research in Mental Health (https://esm-network.eu/) that resulted in the ESM Item 

Repository (see www.esmitemrepository.com). The Network initiated a hackathon for our 

expert team to cooperate on this topic and we developed an online platform containing 

hundreds of publicly available ESM items. The code for the software tool ACTman (chapter 

2; Kunkels et al 202) is publicly available in the Github code repositories (see for example: 
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https://github.com/compsy/ACTman). Another example which is increasingly ingrained in 

the scientific process is pre-registration of hypotheses and methods before conducting a study 

(Nosek et al., 2018). Among others, it is assumed that this procedure will reduce biases and 

allows for a clear distinction between exploratory and confirmatory research. During our 

TRANS-ID project, we pre-registered most of our studies, which allowed for a clear 

demarcation between confirmatory and exploratory research, and prevented hypothesising 

after results were known. Moreover, pre-registration can help make (pre-)processing steps of 

the raw data and research decisions clear at an early stage. However, for highly innovative 

studies, a perceived lack of flexibility when conducting exploratory investigations can feel 

restricting. Also, while the availability of pre-registration templates is supportive and reduces 

the time required to pre-register, it is still a time-consuming process.  

Conclusions 
The studies presented in this thesis support the notion that both actigraphy and cardiac 

assessments offer rich, high-resolution time series data that allows for advanced (predictive) 

analyses, and poses little to no burden to participants. Studied sensor derived EWS showed 

some promise in samples of bipolar and unipolar patients in prediction of an upcoming 

unfavourable mood transition before patients experience increasing severity of their 

symptoms. I reported that a number of generic actigraphy derived EWS were effective in 

predicting upcoming transitions in mood symptoms in some of the participants who tapered 

their antidepressants. Regarding the cardiac data of these participants, we found that 

complexity quantifiers may be supportive to identify individuals who are at risk for 

experiencing an increase in depressive symptoms. However, it is not clear if these results 

would generalise to other samples and even within the individuals currently studied. 

Moreover, it is also not yet clear what would be acceptable false alarm rates for patients and 

their therapists. As such more future research hereinto is required before we can start piloting 

with implementation of the studied markers in mental health care. Interestingly, preliminary 

evidence was found that aggregating actigraphy derived EWS and related indicators could 

improve prediction performance. When real-time analysis of collected data are established, 

the pioneering studies in this thesis may help facilitate the development of future clinical 

tools for mental health care.  
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Chapter 9: Bijlagen 
 

Nederlandstalige samenvatting 
 In de studies die ik hier in mijn proefschrift beschrijf was ons doel om te onderzoeken 

of vroege waarschuwingssignalen (Early Warning Signals ofwel EWS) berekend uit actigrafie 

en ECG data kunnen helpen om veranderingen in symptomen van depressie te kunnen zien 

aankomen. Hierbij is actigrafie een manier om beweging en waak/slaapcycli te meten met 

kleine bewegingsmeters die vaak aan de pols gedragen worden, zoals een Fitbit. Met een 

Elektrocardiogram (ECG, ook wel hartfilmpje genoemd) kan de elektrische activiteit van het 

hart gemeten worden. Ook hebben we onderzocht of de beschikbare apparatuur en software 

goed genoeg werkten voor deze taak.  

 Het eerste deel van mijn proefschrift (hoofdstukken 2 tot 5) is vooral gericht op het 

onderzoeken of EWS berekend vanuit actigrafie, en gerelateerde complexiteitsmaten, 

voorspellend kunnen zijn voor aankomende veranderingen in stemmingssymptomen. 

Daarnaast word in dit deel recent ontwikkelde software gepresenteerd die helpt om meerdere 

voorverwerkingsstappen van actigrafie data te automatiseren. In het tweede deel van mijn 

proefschrift (hoofdstukken 6 en 7) is onderzocht of vroege waarschuwingssignalen, berekend 

uit interbeat intervals (de tijd tussen individuele hartslagen, welke zichtbaar zijn in een 

ECG), voorspellend kunnen zijn voor aankomende veranderingen in (depressieve) 

stemmingssymptomen. Ik zal hieronder in meer detail de hoofdstukken van mijn proefschrift 

samenvatten. 

 In hoofdstuk 2 word de ACTman (Actigraphy manager) software geïntroduceerd. 

Deze software hebben wij ontwikkeld tijdens mijn promotieonderzoek om automatisch grote 

hoeveelheden actigrafie data te kunnen voorbewerken en te kunnen analyseren. Dit werd 

namelijk eerst vaak met de hand gedaan, wat veel tijd kost en kan leiden tot menselijke 

fouten. Deze software hebben we gebruikt om de actigrafie data die we tijdens mijn 

promotieonderzoek hebben verzameld te verwerken en te analyseren. De ACTman software 

kan gebruikt worden om meerdere relevante actigrafie- en EWS variabelen te berekenen, ook 

binnen een aanpasbare en voortschrijdende periode (de moving window methode). 

 In hoofdstuk 3 beschrijven we onze studie waarbij we herhalend, bij individuele 

patiënten met een bipolaire stoornis, onderzoeken of EWS en maten van spectrale 

periodiciteit kunnen helpen bij het aan zien komen van veranderingen in stemming. Een 
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bipolaire stoornis is een mentale aandoening waarbij patiënten periodes van depressieve 

gevoelens ervaren, welke verweven zijn met periodes van abnormaal verhoogde stemming en 

energie. Deze groep patiënten heeft unieke eigenschappen, zoals een verondersteld hogere 

kans om veranderingen instemming te kunnen observeren, vergeleken met patiënten met 

unipolaire depressie. De deelnemers in deze studie hebben hun fysieke activiteit gemeten 

voor 180 dagen, wat ons in staat stelde om te onderzoeken of we aankomende veranderingen 

in stemming konden identificeren op basis van actigrafie data. 

 In hoofdstuk 4 word het onderzoek beschreven waarin we onderzochten of EWS 

kunnen helpen bij het aan zien komen van veranderingen in depressieve symptomen, maar nu 

in een groep deelnemers die hun dosis antidepressieve medicatie aan het afbouwen zijn. Deze 

groep deelnemers is geworven en gemeten tijdens het TRANS-ID (transities in depressie) 

onderzoek. Deze TRANS-ID data zijn specifiek verzameld om te kunnen testen voor 

veranderingen binnen individuen, in tegenstelling tot het merendeel van wetenschappelijke 

studies waarin vooral word gekeken naar veranderingen binnen groepen. Binnen deze groep 

proefpersonen waren mensen die een verandering in stemmingssymptomen ervaarden tijdens 

het afbouwen, maar ook mensen die dit niet ervaarden. Daardoor konden we kijken of EWS 

anders presteerden in mensen die bijvoorbeeld wel een verandering ervaarden. Daarnaast 

hebben we gekeken of sensitiviteits- en specificiteitskenmerken uitmaakten voor het 

presteren van de onderzochte EWS.  

 In hoofdstuk 5 word een studie gepresenteerd waarbij we data onderzoeken die 

verzameld is door deelnemers van de Mood and Movement in Daily Life (MOOVD) studie. 

Deze deelnemers hebben dertig dagen onder andere hun ECG gemeten. Deze data hebben we 

onderzocht op groepsverschillen tussen depressieve en niet-depressieve deelnemers. Daarbij 

keken we naar variabelen zoals de gemiddelde hoeveelheid activiteit, circadiane ritmiek, en 

complexiteitsmaten. Nieuwe complexiteitsmaten gebaseerd op zogenaamde 

herhalingsgrafieken (recurrence plots) worden binnen dit hoofdstuk gepresenteerd en hun 

effectiviteit in het detecteren van stemmingsveranderingen onderzocht. Gegeven de niet-

rechtlijnigheid van IBI-data kunnen dergelijke herhalingsgrafieken helpen om belangrijke 

patronen in de data te ontrafelen, welke met andere technieken minder goed zichtbaar zijn.  

 In hoofdstuk 6 hebben we twee nieuwe, draadloze, en draagbare ECG monitors (de 

Cortrium C3 en de Ithlete Finger Sensor) onderzocht om hun haalbaarheids-, validiteits-, en 

reproduceerbaarheidskenmerken weer te kunnen geven. Deze twee monitors werden getest 
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tegenover een ECG referentie monitor (het VU-AMS) om te zien of de door hun verzamelde 

data valide was onder verschillende geprotocolleerde condities. Daarnaast werd onderzocht 

of deelnemers zelf in staat waren thuis hun ECG te meten met deze twee ECG monitors. 

 In hoofdstuk 7 werd onderzocht of complexiteit- en variabiliteitsmaten voor hart 

dynamiek afnamen in de periode voor een verandering in depressieve symptomen in een 

groep TRANS-ID deelnemers die hun antidepressieve medicatie afbouwden. Een afname 

hierin werd verwacht omdat we weten dat deze maten vaak substantieel lager zijn in 

individuen die lijden aan depressie.  

 Samengevat vonden we dat de onderzochte apparatuur en software geschikt was voor 

het meten en analyseren van ECG en actigrafie data. Echter, na het analyseren van de 

verzamelde data konden we nog niet zeggen dat vroege waarschuwingssignalen berekend uit 

deze data geschikt zijn om in de klinische praktijk te gebruiken om veranderingen in 

depressieve symptomen bij patiënten te voorspellen. Daarvoor moet eerst nog meer 

onderzoek gedaan worden naar hoe ECG en actigrafie patronen eruit zien bij zowel gezonde 

mensen als mensen met een depressieve stoornis.  
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Dankwoord 
 

Mijn promotietraject was voor mij een voorproefje hoe het is om in de wetenschap te werken. 

En hoe het is om samen te werken met alle bijzondere, intelligente, en sympathieke mensen 

die mijn werkveld rijk is. Deze ervaring was niet mogelijk geweest zonder enkele speciale 

mensen die ik hiervoor graag wil bedanken. 

Marieke, het was fantastisch om te zien hoe enthousiast je je inzette voor het 

wetenschappelijke werk en het TRANS-ID project in het bijzonder. Je hebt al je PhD’s met 

volle overgave begeleid om hun werk naar een hoger niveau te tillen. Bedankt dat ik mocht 

meewerken aan zo’n bijzonder project! 

Harriëtte, wat heb ik ontzettend veel van jou mogen leren, zowel op gebied van de 

fysiologie, waar jij duidelijk expert op bent, alsmede op sociaal en communicatief niveau. 

Dat ik jou niet menigmaal tot waanzin heb gedreven bij het afronden van mijn proefschrift, 

waarin ik zeker niet de makkelijkste of bereikbaarste was, getuigt van jouw kracht als 

promotor. Je was er altijd, zelfs als ik het voor mijn gevoel even had laten zitten of ergens in 

gefaald had. En dat was juist wat ik nodig had, iemand die er ongeacht deze problemen toch 

was. Daarnaast was ik de eerste PhD-student die je op in deze rol hebt mogen begeleiden, ik 

weet zeker dat de volgenden alleen maar makkelijker zullen zijn. Dank je wel voor alles! 

Arie, wat fijn dat je mee hebt willen helpen bij het succesvol afronden van mijn 

promotietraject. Ook jij bent duidelijk expert op gebied van de fysiologie. Daarnaast heb je 

een sterk analytisch inzicht en aanzienlijke vaardigheden in het programmeren en 

ontwikkelen van software. Met jouw praktische en gegronde adviezen hebben we veel 

hindernissen in de dataverwerking kunnen overwinnen. Daarnaast was jouw feedback, zowel 

op de geschreven papers, alsmede op de uitvoering van het project, altijd erg down-to-earth, 

kort, maar vooral ook krachtig. 

Prof. dr. D. Borsboom, Prof. dr. I. Germeys en Prof. dr. R. C. Oude Voshaar, bedankt 

voor het lezen en beoordelen van dit proefschrift.  

Ook wil ik graag alle deelnemers aan het TRANS-ID onderzoek bedanken. Er is veel tijd 

en energie van jullie gevraagd om tot deze resultaten te komen. Jullie hebben dit 

onbaatzuchtig gedaan voor een betere wetenschap en om anderen te helpen. Zonder jullie was 

dit allemaal niet mogelijk geweest.  
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Esther en Margo, dank jullie voor alle ondersteuning op de afdeling. Jullie inzet en kennis 

van dit soort zaken zorgt ervoor dat wij ons op het onderzoek konden focussen.  

Gerda Bloem, dank voor alle ondersteuning met alle apparatuur, een cruciaal punt in ons 

onderzoek. Door jouw focus en oog voor detail hebben we gebruik kunnen maken van 

goedwerkende apparatuur. 

Daniël, Evi, en Gijs, dank jullie voor de hulp bij het verwerken van de hartslagdata en de 

verdere ondersteuning bij het project. Jullie hebben allen unieke en sterke vaardigheden, en ik 

ben er zeker van dat jullie het ver kunnen schoppen hiermee. 

Evelien, wat heb jij je ontzettend ingezet om van dit project een succes te maken. Je hebt de 

taken die daarbij horen vol overgave aangepakt en je er volledig voor ingezet deze goed af te 

ronden. Jouw gedrevenheid hierin is naar mijn inziens enkel overschaduwd door jouw 

intelligentie en kennis van de onderwerpen die wij in dit project bestudeerden.  

Maurits, Vera, en alle andere open science enthousiastelingen, wat was het fijn om met 

jullie samen te werken, en te debatteren over iets wat we allen belangrijk vinden; open 

science. En niet alleen het transparant maken van wetenschap staat bij jullie hoog op de 

agenda, maar ook het verbeteren van de wetenschap in de breedste zin. Dankzij jullie inzet 

maken we ons werkveld stapje voor stapje beter en integerder. 

Sandip and Olga, it was a pleasure working together on quite a few papers and projects. You 

are already experts in your respective fields, and I’m sure you will make an even bigger 

impact on the scientific community in the future. 

Olivia, Martine, Anu, Davinia, and others from the ESM Item Repository, hi you guys, I 

never would have thought that one hackathon would result in such a cool, long-lasting, and 

relevant project. There is almost no project that I have enjoyed working more on, in such a 

stress-free manner. I feel this is mostly because of how complementary our skills are, with 

such people-skills, charisma, tech-savviness, and just plain interest in helping to improve 

science and people’s lives, we are bound to keep improving the Repository into the open 

science gem it is.  

YAM FARM, alleen terugkijkend kan ik beseffen hoezeer ik het wel niet met jullie getroffen 

heb als directe collega’s. Het was fijn om gezamenlijk koffie te gaan drinken en het werk te 

kunnen bespreken. Ook de borrels, etentjes, en schrijfweken die we gezamenlijk hebben 

meegemaakt waren mooie avonturen.  
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Arnout, als er op werk lol te beleven was, of als er iemand was die op een vriendelijke wijze 

in de maling genomen kon worden, dan waren we er vaak samen al snel bij. De manier hoe 

we elkaar daarbij aanvulden vond ik erg bijzonder. Naast de grappen en grollen is het mij ook 

duidelijk geworden hoe sterk jij bent in jouw vakgebied, en hoe goed je deze kennis kunt 

overdragen aan anderen. Ook heb je een erg empathisch kant die jou een erg prettige collega 

en mens maken. 

Marmar, jij creatieve geest. Wat ben jij goed in het ontwerpen en creëren van dingen! Maar 

daarnaast ben je ook iemand die heel goed kan luisteren en eigenlijk nooit een snel een slecht 

oordeel over een ander zal vellen. Jouw persoonlijkheid schept een gevoel van veiligheid en 

geborgenheid die mij erg geholpen heeft. 

Fionneke, naast jouw kennis van de wetenschap en de studies waar je je voor inzet was het 

ook gewoon fijn om met jou over andere dingen te kunnen spreken. Je bent nuchter maar ook 

empathisch en invoelend. Zo schep je de mogelijkheid voor de mensen om je heen om open 

van alles te kunnen praten. 

Anouk, ik vond het altijd bijzonder om te zien hoe sterk je je kunt maken voor dingen waar 

je in gelooft en hoe fijn praktisch je oplossingen vind voor ogenschijnlijk complexe 

problemen.  

Robin, jij bent denk ik een geboren leider, iemand die haar eigen plan trekt en anderen kan 

motiveren daarbij te ondersteunen. Je hebt een sterk gevoel voor hetgeen wat om je heen 

gebeurd en weet dit vlot naar actie te vertalen. Gecombineerd met een overtuigend intellect 

kun je het ver schoppen in de werkrichting die je ambieert. 

Marieke, je bent een bijzondere combinatie van iemand met een zeer ontwikkelde 

intelligentie maar ook een neiging om heel basaal en zonder filter te kunnen reageren. Dit 

maakt je tot een heel eerlijk en authentiek persoon. Je enthousiasme over sommige 

onderwerpen werkt vaak aanstekelijk.  

Elwin, Guus, en Stef, volgens de theorie van Robin Dunbar kan een persoon maximaal vijf 

goede vrienden hebben. Ik heb er echter maar drie nodig gehad, en dat zijn jullie. Het is altijd 

fijn om met jullie even mijn zinnen te verzetten en even ergens anders aan te denken dan het 

afronden van een promotietraject of proefschrift. Elwin, jij bent altijd diegene geweest 

waaraan ik mijn sleutel van mijn kluisje gaf als ik dacht dat ‘m zelf kwijt zou raken. Je bent 

betrouwbaar en down-to-earth, maar ergens ook empathisch en proberend om een goede 
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middenweg te vinden. Ik hoop dat we nog veel biertjes mogen drinken. Guus, je bent altijd 

de doerak van de groep geweest, diegene die iedereen uitdaagde, maar daardoor ook op 

zichzelf laat reflecteren. Je hebt vaak een sterk gevoel over dingen, wat je met passie 

uitdraagt. Daarnaast heb je enorme creativiteit waar je een succesvolle business omheen hebt 

gebouwd. Ik hoop dat we nog vaak mogen proosten. Stef, ik ken je al een ontzettend lange 

tijd, sinds we samen als tieners op scouting zaten. Ik ben blij dat we zo veel mooie dingen 

hebben mogen meemaken, al hebben we ook het nodige verdriet gedeeld. Je hebt een passie 

voor muziek en je kent originele manieren om hier vorm aan te geven. Ik hoop dat we nog 

vaak mogen toosten op de goede dingen in het leven. 

Cheyenne en Jenita, / lieve zussen, ook al is er een leeftijdsverschil tussen ons ben ik 

ontzetten blij jullie als zussen te hebben. Zeker nu we voor mijn gevoel de laatste jaren meer 

naar elkaar toe gegroeid zijn. Cheyenne, dank je wel voor je hulp bij het organiseren van de 

promotie. Je bent van nature iemand bij wie het regelen van dingen goed af gaat. Je bent 

secuur en doortastend en ziet de dingen het liefst goed geregeld. Je bent ontzettend betrokken 

bij dingen die je belangrijk vind. Je bent erg goed op weg met een mooie baan en een woning. 

Ook ben je jezelf steeds verder aan het ontwikkelen met cursussen en trainingen. Super dat je 

het allemaal zo goed doet, ik ben blij dat jij mijn zus bent! Jenita, dank je wel voor je inzet 

bij het grafische ontwerp van mijn proefschrift. Je bent een creatief en ondernemend persoon. 

Daarnaast ben je geïnteresseerd om ook de andere kant van het verhaal te horen. Inmiddels 

heb je een baan gevonden die aansluit op je studie en ben je serieus bezig met jouw ambities 

om een creatieve onderneming op te zetten. Geweldig om te zien hoe je hierin groeit, ik ben 

blij dat je mijn zus bent! 

Lia, Leo, Gerda, Eric, / lieve ouders, ik kan niets op papier zetten wat geheel mijn 

dankbaarheid naar jullie beschrijft. Jullie hebben mij altijd met raad en daad bijgestaan. We 

hebben mooie maar ook moeilijke periodes meegemaakt, en volgens mij zijn we hier allen 

erg in gegroeid. Mam, dank je wel dat je er altijd voor mij geweest bent en dat je altijd voor 

mij gevochten hebt. Ik vind het erg fijn zo veel dingen met jou te kunnen bespreken en 

gevoelens te kunnen delen. Pa¸ dank je wel voor de momenten die we samen door konden 

brengen en jouw humor. Ik kijk er naar uit samen over interessante onderwerpen, 

wetenschappelijk, sciencefiction, enzovoorts, te kunnen blijven praten. Gerda, dank je voor 

alle gesprekken waarin je mij een spiegel voor kon houden zodat ik op dingen kon 

reflecteren. Eric, dank je voor alle steun en jouw grondige en nuchtere kijk op dingen, zonder 

dat zou ik hier niet kunnen zijn. 
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Lieve Berber en Sarah, wat hebben wij veel meegemaakt, mooie maar ook uitdagende 

momenten. Berber dank je voor jouw steun de afgelopen jaren die geholpen hebben dit 

proefschrift af te ronden. Samen vervelen we ons geen moment en kunnen we bijzondere 

dingen meemaken. Fijn hoe je altijd hebt ondersteund bij het beter maken van dingen zo ook 

dit proefschrift. Je steun, aanmoediging en liefde hebben het verschil gemaakt tijdens dit 

veeleisende proces. Bedankt dat je er altijd voor me bent geweest en me hebt aangemoedigd 

om door te gaan, zelfs als het zwaar werd. Ik ben ontzettend dankbaar voor jouw steun. 

Sarah, mijn lieve dochter, je bent nog zo jong maar ik hoop dat jouw al een mooie en 

gelukkige toekomst staat te wachten. Ik hoop dat je veel gezondheid, geluk, en plezier mag 

treffen op jouw levenspad. Of je nu wel of niet ook de academische kant op gaat, volg je hart, 

wees eerlijk naar jezelf, en weet dat ik altijd van je hou.   
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study advisor at the University of Amsterdam (UvA), Mrs. J. M. de Vries, supported Yoram 

in getting math tutoring and the chance to enrol in university by successfully completing an 

admission test, the so-called colloquium doctum. Yoram did successfully complete the test 
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